Fiziol. rast. genet. 2019, vol. 51, no. 4, 295-307, doi: https://doi.org/10.15407/frg2019.04.295

The use of biotechnological techniques in the creation and reproduction of the intergeneric hybrid Festulolium of the morphotype of tall fescue (Festuca arundinacea) with high nutritional qualities of fodder

Mazur T.V.1, Kondratskaya I.P.1, Stolepchenko V.A.2, Vasko P.P.2, Deeva A.M.1, Voitsekhouskaya E.A.1, Chizhik O.V.1, Priadkina G.A.3, Reshetnikov V.N.1

  1. Central Botanical Garden, National Academy of Sciences of Belarus 2v Surganov St., Minsk, 220012, Republic of Belarus
  2. Research and Practical Center of National Academy of Sciences of the Republic of Belarus for Arable Farming  1 Timiriyazeva St., Zhodino, 222160, Republic of Belarus
  3. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kiev, 03022, Ukraine

With the help of cell biotechnologies, fertile intergeneric (C tall fescue variety Zarnitsa and X ryegrass multi-flowered variety Matador) hybrids of festulolium of the tall fescue morphotype were created. Methods of microclonal reproduction of intergeneric hybrids have been developed. The conditions of microclonal reproduction are described that make it possible to shorten the time taken to create hybrids of festulolium. A comparative analysis of the carbohydrate content in the green mass of hybrid festulolium plants and their parent forms has been carried out. It has been established that hybrids significantly (by 17—27 %) exceeded the parental forms in the total content of water-soluble carbohydrates in the vegetative mass. It was also found that the relative content of disaccharides in the total content of water-soluble carbohydrates in parental forms was less (36—39 %) than in hybrid plants (50—53 %). The created fertile intergeneric hybrids of festulolium of the tall fescue morphotype are genetic sources of economically valuable traits and can serve as a basis for breeding varieties and hybrids of perennial cereal grasses with a high level of productivity.

Keywords: Festulolium, Festuca arundinacea Schreb., intergeneric hybrids, morphotype, micropropagation, regenerated plants, explant, carbohydrates

Fiziol. rast. genet.
2019, vol. 51, no. 4, 295-307

Full text and supplemented materials

Free full text: PDF  

References

1. Clayton, W.D. & Renvoize, S.A. (1986). Genera Gramium: grasses of the world. London: H.M.S.O.

2. Kopecky, B., Lukaszewski, A. J. & Gibeault, V. (2005). Reduction of Ploidy Level by Androgenesis in Intergeneric Lolium-Festuca Hybrids for Turf Grass Breeding. Crop Science Society of America, 45, pp. 274-281.

3. Leceniewska-Boicianowska, A., Kosmala, A., Skibinska, M. & Zwierzykowski, Z. (2001). Zastosowanie genomowej hybrydyzacji in situ w badaniach genetycznych mieszancow oddalonych kompleksu Lolium-Festuca. Zeszyty Problemowe Postepow Nauk Rolniczych, 474, pp. 37-46.

4. Thomas, H.M., Morgan, W.G. & Humphreys, M.W. (2003). Designing grasses with nature - combining the attributes of Lolium and Festuca. Euphytica, 133, pp. 19-26. https://doi.org/10.1023/A:1025694819031

5. Klyga, E.R. & Vasko, P.P. (2016). Festulolium: agronomic aspects of cultivation. Analytical review. Minsk: ICC Ministry of Finance [in Russian].

6. Zolotarev, V.N., Zotov, A.A., Koshen, M.V., Kuleshov, G.F., Ryabova V.E. & Semenov, N.A. (2008). Ecological-biological and technological bases of cultivation of ryegrass. Astana: Tipografiya IP Zhadilova S.P. [in Russian].

7. Aschenson, P. & Graebnen, P. (1902). Sinopsis den Mitteleno-paichen Flora. Leipzig. Bd.2, ab. 1.

8. Bulashevich, N.E. (1938). Hybrids of Festuca pratensis with English ryegrass. Selection and Seed Production, 7, pp. 27-29 [in Russian].

9. Kuleshov, G.F. (2005). Selection of the main types of perennial cereal grasses. Selection and seed production of perennial grasses. Moscow: VNIIK [in Russian].

10. Kondratskaya, I., Stolepchenko, V., Chizhik, O., Yukhimuk, A., Mazur, T., Reshetnikov, V. & Vasko, P. (2018). Cellular and molecular technologies for creation of intergeneric hybrids of Festulolium. Environmental and Experimental Biology, 16, No. 3, p. 218.

11. Butenko, R.G. (1999). Biology of cells of higher plants in vitro and biotechnology based on them. Moscow: FBK-PRESS [in Russian].

12. Kondratskaya, I.P., Stolepchenko, V.A., Vasko, P.P., Mazur, T.V. & Chizhik, O.V. (2017, December). Creation of intergeneric and interspecific hybrids of cereal grasses using postgenomic technologies (in vitro, cell and tissue culture). Biotechnology: Achievements and Prospects for Development (pp. 20-22). Pinsk [in Russian].

13. Arasimovich, V.V. (1987). Determination of sugars. Methods of biochemical studies of plants. Ermakov, A. I. (Ed.) Leningrad, pp. 122-142 [in Russian].

14. Dospehov, B.A. (1973). The methods of field experiment. Moskva: Kolos [in Russian].

15. Sivash, O.O., Myhaylenko, N.F. & Zolotareva, O.K. (2001). Sugars as a key link in the regulation of the metabolism of photosynthetic cells. Ukr. Bot. J., 58, No. 1, pp. 121-125 [in Ukrainian].

16. Bhowmik, P.K., Tamura, K., Sanada, Y., Tase, K. & Yamada, T. (2006). Sucrose Metabolism of Perennial Ryegrass in Relation to Cold Acclimation. Z. Naturforsch. C., 61, No. 1-2, pp. 99-104. Retrieved 12 Jun. 2019, from https://doi.org/10.1515/znc-2006-1-218

17. Trouvelot, S., Heloir, M.C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trda, L., Daire, X. & Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci., 5: 592. Published online 2014, Nov 4. https://doi.org/10.3389/fpls.2014.00592

18. Kudasheva, A.V., Galiev, B.Kh., Zaveryukha, A.Ch. & Kartekenov, K.Sh. (2015). The biological value of carbohydrates of perennial crops and the impact on the productivity of cattle. Bulletin of beef cattle, 4 (92), pp. 135-139 [in Russian].

19. Slewinski, T.L. (2012). Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot., 63, No. 13, pp. 4647-4670. https://doi.org/10.1093/jxb/ers124

20. Yang, J., Zhang, J., Wang, Z. & Zhu, Q. (2001). Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J. Exp. Bot., 52, No. 364, pp. 2169-2179. https://doi.org/10.1093/jexbot/52.364.2169

21. Keunen, E., Peshev, D., Vangronsveld, J., van den Ende, W. & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ., 36, pp. 1242-1255. https://doi.org/10.1111/pce.12061

22. Rolland, F., Baena-Gonzalez, E. & Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol., 57, pp. 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441