Fiziol. rast. genet. 2017, vol. 49, no. 1, 64-70, doi: https://doi.org/10.15407/frg2017.01.064

The influence of NADPH oxidase inhibitor and calcium antagonists on herbicides acetyl-CoA-carboxylase and acetolactate syntase inhibitors phytotoxic

Sychuk A.M., Morderer Ye.Yu.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI), calcium channel blocker lantanum chloride (LaCl3) and calmodulin antagonist chlorpromazine (CP) impact on phytotoxic action of herbicides acetyl-CoA-carboxylase (ACC) and acetolactate synthase (ALS) inhibitors had been investigated, for understanding the significance of reactive oxygen species (ROS), formed as a result of non-specific stress response, including activation of NADPH oxidase, contribution to the pathogenesis induced by herbicides. It was established that the influence of DPI, LaCl3 and HP on ALS inhibitor phytotoxic action significantly exceeded their impact on the effect of the ACC inhibitor. It was concluded that in the pathogenesis induced by ALS inhibiting herbicides a basic value have ROS, which are formed as a result of non-specific stress response of plants to herbicides, on the other hand for ACC inhibitors — more significant is the contribution of the ROS, coming from another source.

Keywords: NADPH oxidase, diphenyleneiodonium chloride, lanthanum chloride, chlorpromazine, reactive oxygen species, programmed cell death

Fiziol. rast. genet.
2017, vol. 49, no. 1, 64-70

Full text and supplemented materials

Free full text: PDF  

References

1. Gar'kova, A.N., Rusyaeva, M.M., Nushtaeva, O.V., Aroslankina, Yu.N. & Lukatkin, A.S. (2011). Treatment with the herbicide granstar induces oxidative stress in cereal leaves. Fiziologiya rasteniy, 58, No. 6, pp. 935-944 [in Russian]. https://doi.org/10.1134/S1021443711060069

2. Glyan'ko, A.K., Ishchenko, A.A., Mitanova, N.B. & Vasilyeva, G.G. (2009). NADPH oxidase of plants. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biologiya, No. 2 (17), pp. 6-18 [in Russian].

3. Morderer, Ye.Yu., Palanytsya, M.P. & Rodzevych, O.P. (2008). Investigation of the participation of free radical oxidation reactions in the development of phytotoxic effects of graminicides. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 1, pp. 56-62 [in Ukrainian].

4. Morderer, Ye.Yu. (2008). Current state, problems and prospects of the development of chemical method of weed control. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 6, pp. 492-502 [in Ukrainian].

5. Morderer, Ye.Yu. (2009). Physiological aspects of crop protection from weeds. Plant physiology: problems and prospects of development. Kyiv: Logos, Vol. 2, pp. 12-39 [in Ukrainian].

6. Palanytsya, P.M., Sorokina, S.I. & Morderer, Ye.Yu. (2012). Reactive oxygen species and their transformation in the formation of rhizobia-legume symbiosis under the of herbicides action. Fiziolohiya i biokhimiya kul't. rasteniy, 44, No. 4, pp. 302-311 [in Ukrainian].

7. Palanytsya, M.P., Trach, V.V. & Morderer, Ye.Yu. (2009). The generation of reactive oxygen species under the action of granicides and modificators of their phytotoxicity. Fiziolohiya i biokhimiya kul't. rasteniy, 41, No. 4, pp. 328-334 [in Ukrainian].

8. Palanytsya, M.P., ​​Trach, V.V., Rodzevych, O.P. & Morderer, Ye.Yu. (2008). Possible participation of reactive oxygen species in the development of phytotoxic effects of graminicides. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 4, pp. 355-361 [in Ukrainian].

9. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2016). The activity of NADPH-oxidase in the corn seedlings root merystem under the herbicide inhibitor of acetyl-CoA carboxylase action. Fiziol. rast. genet., 48, No. 6, pp. 544-547 [in Ukrainian].

10. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2013). The reducing of antagonism in the mixtures of herbicides through specific inhibitor of superoxide dismutase. Uch. zapysky Tavrich. nats. un-tu im. V.I. Vernads'koho. Ser. Biolohiya, khimiya, 26 (65), No. 3, pp. 161-168 [in Ukrainian].

11. Sychuk, A.M., Nizkov, Ye.I., Rodzevych, O.P. & Morderer, Ye.Yu. (2016). Interaction effects in the mixtures of acetolactate synthase inhibiting herbicides with herbicide metribuzin. Karantyn i zakhyst roslyn, No. 2-3, pp. 27-29 [in Ukrainian].

12. Sychuk, A.M., Radchenko, M.P. & Morderer, Ye.Yu. (2013). Programmed cell death in the pathogenesis induced by herbicides inhibitors of acetyl-CoA carboxylase. Biol. studiyi, 2, pp. 101-106 [in Ukrainian]. https://doi.org/10.30970/sbi.0702.294

13. Sychuk A.M. (2015). The participation of programmed cell death in the herbicides induced pathogenesis. (Extended abstract of candidate thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].

14. Bates, S. & Vousden, K.H. (1999). Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci., 55, pp. 28-37. https://doi.org/10.1007/s000180050267

15. Bindschedler, L.V., Dewdney, I., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D.R., Ausubel, F.M. & Bolwell, G.P. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J., 47, pp. 851-863. https://doi.org/10.1111/j.1365-313X.2006.02837.x

16. Burbridge, E., Diamond, M., Dix, P.J. & McCabe, P.F. (2007). Use of a cell morphology to evaluate the effect of a peroxidase gene on the cell death induction thresholds in tobacco. Plant Sci., 172, pp. 853-860. https://doi.org/10.1016/j.plantsci.2006.03.024

17. Chen, S. & Dickman, M. (2004). Bc1-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot., 55, pp. 2617-2623. https://doi.org/10.1093/jxb/erh275

18. Chichkova, N.V., Shaw, J., Galiullina, R.A., Drury, G.E., Tuzhikov, A.I., Kim, S.H., Kalkum, M., Hong, T.B., Gorshkova, E.N., Torrance, L., Vartapetian, A.B. & Taliansky, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J., 29, pp. 1149-1161. https://doi.org/10.1038/emboj.2010.1

19. Dan Hess, F. (2000). Light-dependent herbicides: an overview. Weed Sci., 48, pp. 160-170. https://doi.org/10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2

20. Danon, A., Delorme, V., Mailhac, N. & Gallois, P. (2000). Plant programmed cell death: a common way to die. Plant Physiol. Biochem., 38, pp. 647-655. https://doi.org/10.1016/S0981-9428(00)01178-5

21. Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjärvi, J., Inze D. & Van Breusegem, F. (2003).Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J., 33, pp. 621-632. https://doi.org/10.1046/j.1365-313X.2003.01655.x

22. de Freitas, D.S., Coelho, M.C., Souza, M.T.Jr., Marques, A. & Ribeiro, E.B. (2007). Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotechnol. Lett., 29, pp. 79-87. https://doi.org/10.1007/s10529-006-9201-9

23. Delye, C. (2005). Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci., 53, pp. 728-746. https://doi.org/10.1614/WS-04-203R.1

24. De Pinto, M., Locato, V. & de Gara, L. (2012). Redox regulation in plant programmed cell death. Plant Cell Environ., 35, pp. 234-244. https://doi.org/10.1111/j.1365-3040.2011.02387.x

25. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M. & Dolan, L. (2003). Reactive oxygen species produced by NADPH-oxidase regulate plant cell growth. Nature, 6, pp. 422-442. https://doi.org/10.1038/nature01485

26. Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays, 28, pp. 1091-1101. https://doi.org/10.1002/bies.20493

27. Graham, M.Y. (2005). The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol., 139, pp. 1784-1794. https://doi.org/10.1104/pp.105.068676

28. Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature, 407, pp. 770-776. https://doi.org/10.1038/35037710

29. O'Brien, E.W., Baguley, B.C., Murray, B.G. & Morris, B.A. (1998). Early stages of the apoptotic pathway in plant cells are reversible. Plant J., 13, pp. 803-814. https://doi.org/10.1046/j.1365-313X.1998.00087.x

30. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2014). Decrease of the herbicide fenoxaprop phytotoxicity in the drought condition: the role of antioxidant enzymatic system. J. Plant. Protection Res., 54, No. 4, pp. 390-394. https://doi.org/10.2478/jppr-2014-0058

31. Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340. https://doi.org/10.1104/pp.106.078089

32. Stidham, M.A. (1991). Herbicides that inhibit acetohydroxyacid synthase. Weed Sci., 39, pp. 428-434.