Fiziol. rast. genet. 2017, vol. 49, no. 1, 25-35, doi:

Peculiarities of the chloroplast pigment composition and ultrastructure of different plant taxa

Babenko L.M., Kosakivska I.V.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska St., Kyiv, 01661, Ukraine
  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska St., Kyiv, 01661, Ukraine

The chloroplast pigment composition and ultrastructure were studied in different plant taxa: Equisetum arvense L., Salvinia natans (L.) All., Triticum aestivum L. It was found that vegetative shoots of E. arvense are characterized by a high content of photosynthetic pigments associated with lens-shaped chloroplasts while in generative shoots photosynthetic pigments occur in smaller quantities and are associated only with storage organelles, lipoplasts. The content of chloroplast photosynthetic pigments and ultrastructure in floating and submerged leaves of the water fern S. natans differ distinctly. Chloroplasts T. aestivum leaf mesophyll cells differed by high amount of well-developing grana that densely fill organell’s volume. They are characterized by a high content of pigments associated with protein complexes, incorporated into photosynthetic membranes. The peculiarities of the chloroplast pigment complex and ultrastructure organization of different plant taxa are discussed in aspect of their adaptation characteristics and evolution.

Keywords: Equisetum arvense L., Salvinia natans (L.) All., Triticum aestivum L., pigments, chloroplast, ultrastructure

Fiziol. rast. genet.
2017, vol. 49, no. 1, 25-35

Full text and supplemented materials

Free full text: PDF  


1. Andrianova, Y.E. & Tarchevsky, I.A. (2000). Chlorophyll and plant productivity. Moscow: Nauka [in Russian].

2. Babenko, L.M., Sheyko, O.A., Kosakivska, I.V., Vedenichova, N.P., Nehretskiy, V.A. & Vasheka, O.V. (2015). Structural and functional characteristics of pteridophytes (Polypodiophyta). Bull. Charkovsky Natl. Agr. Univ., No. 1(34), pp. 80-103 [in Ukrainian].

3. Voytenko, L.V., Shcherbatyuk, M.M., Stakhiv, M.P. & Musatenko, L.I. (2012). Ultrastructural features of internode cells of field horsetail (Equisetum arvense L.). Dopov. Nac. akad. nauk Ukr., No. 2, pp. 170-173 [in Ukrainian].

4. Ivanov, L.A., Ivanova, L.A., Ronzhina, D.A. & Yudina P.K. (2013). Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural. Russ. J. Plant Physiol., No. 60 (6), pp. 812-820.

5. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kiev: Logos [in Russian].

6. Kiriziy, D.A. (2004). Photosynthesis and plant growth in the aspect of donor-acceptor relations. Kiev: Logos [in Russian].

7. Klimenko, E.N. (2014). Structural and functional aspects of heterophylly in Nuphar lutea (L.) Smith. (Extended abstract of candidate (PhD) thesis). Institute of Food Biotechnology and Genomics, Kyiv, Ukraine [in Ukrainian].

8. Kochubey, S.M., Bondarenko, O.Yu. & Shevchenko, V.V. (2014). Photosynthesis. Vol. 1. The structure and functional peculiarities of light phase of photosynthesis. Kiev: Logos [in Russian].

9. Maslova, T.G., Mamushina, N.S., Sherstneva, O.A. & Bubolo, L.S. (2009). Seasonal structural and functional changes in the photosynthetic apparatus of evergreen. Russ. J. Plant Physiol., No. 56 (5), pp. 607-615.

10. Mokronosov, A.T., Gavrilenko, V.F. & Zhigalova T.V. (2006). Photosynthesis: physiological, environmental and biochemical aspects. Moscow: Akademiya [in Russian].

11. Nedukha, O.M. (2014). Heterophylly in Plants. Kyiv: Alterpress [in Ukrainian].

12. Smolikova, G.N. & Medvedev, S.S. (2015). Seed carotenoids: synthesis, diversity, and functions. Russ. J. Plant Physiol., No. 62 (1), pp. 1-13.

13. Sofronova, V.E., Chepalov, V.A., Dymova, O.V. & Golovko, T.K. (2014). The role of pigment system of an evergreen dwarf shrub Ephedra monosperma in adaptation to the climate of Central Yakutia. Russ. J. Plant Physiol., No. 61 (2), pp. 246-254.

14. Stakhiv, M.P., Shcherbatuik, M.M., Voytenko, L.V. & Musatenko, L.I. (2013). Ultrastructural features of the internodes' surface in horsetail (Equisetum arvense L.). Modern Phytomorphology, No. 4, pp. 355-358 [in Ukrainian].

15. Sytnikov, D.M., Babenko, L.M. & Shcherbatuik, M.M. (2013). Photosynthetic pigments and ontogenesis of Equisetum arvense L. Bull. Odessa national univ. Ser. Biology, No. 18 (2), pp. 50-63 [in Russian].

16. Shcherbatiuk, M.M., Babenko, L.M., Sheyko, O.A. & Kosakivska I.V. (2015). Microstructural features of water fern Salvinia natans (L.) All. organ surfaces. Modern Phytomorphology, No. 7, pp. 129-133 [in Ukrainian].

17. Shcherbatiuk, M.M., Bricov, V.O. & Martin, G.G. (2015). Preparation of samples of plant tissues for electronic microscopy (theoretical and practical aspects). Kyiv: Talkom [in Ukrainian].

18. Austin, J.R., Frost, E., Vidi, P.A., Kessler, F. & Staehelin L.A. (2006). Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell., No. 18, pp. 1693-1703.

19. Babenko, L.M., Kosakivska, I.V., Akimov, Yu.A., Klymchuk, D.O. & Skaternya, T.D. (2014). Effect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol., No. 4 (1-2), pp. 117-125.

20. Barthlott, W., Wiersch, S., Colic, Z. & Koch, K. (2009). Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes. Botany, No. 87, pp. 830-836.

21. Björkman, O. (1998). Responses to different quantum flux densities. In: Physiological Plant Ecology. I. Responses to the Physical Environment. Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (Eds.), pp.57–107, Berlin: Springer-Verlag.

22. Carde, J.-P. (1987). Electron microscopy of plant cell membranes. Methods in enzymology, No. 148, pp. 599-625.

23. Croxdale, J.G. (1981). Salvinia leaves. III. Morphogenesis of the submerged leaf. Can. J. Bot., No. 59, pp. 2065-2072.

24. Cuttriss, A.J. & Pogson, B.J. (2004). Carotenoids. In Davies, K. M. (Ed.), Plant pigments and their manipulation, pp. 57-91. Boca Raton: CRC Press.

25. Demmig-Adams, B., Gilmore, A.M. & Adams, W.W. (1996). Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J., No. 10, pp.403-412.

26. Evert, R.F. (2007). Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd Edition. New Jersey: John Wiley & Sons, Inc.

27. Marshall, G. (1986). Growth and development of field horsetail (Equisetum arvense L.). Weed Sci. No. 34, pp.271-275.

28. Mozzo, M., Dall'Osto, L., Hienerwadel, R., Bassi, R. & Croce, R. (2008). Photoprotection in the antenna complexes of photosystem II. Role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem., No. 283 (10), pp. 6184-6192.

29. Nagalingum, N.S., Schneider, H. & Pryer, K.M. (2006). Comparative morphology of reproductive structures in heterosporous water ferns and a reevaluation of the sporocarp. Int. J. Plant Sci., No. 167 (4), pp. 805-815.

30. Oquist, G. & Huner, N.P. (2003). Photosynthesis of overwintering evergreen plants. Annu. Rev. Plant Biol., No. 54, pp. 329-355.

31. Page C. (2002). Ecological strategies in fern evolution: a neopteridological overview. Rev. Palaeobot. Palynol., No. 119, pp. 1-33.

32. Parry, D.W., Hodson, M.J. & Sangster, A.G. (1984). Some recent advances in studies of silicon in higher plants. Philos. Trans. Royal Soc. London, Ser. B, No. 304, pp. 537-549.

33. Pogson, B.J., Rissler, H.M. & Frank, H.A. (2005). The role of carotenoids in energy quenching. In The Light-Driven Water: Plastoquinone Oxidoreductase, Wyrdzynski, T. & Satoh, K. (Eds.), pp. 515-537. Dodrecht: Springer.

34. Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.L. & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol., No. 158, pp. 1267-1278.

35. Soll J. (2016). The plastid reticulum reloaded. Endocytobiosis & Cell Res., No. 27, pp. 6-10.

36. Spicher, L. & Kessler, F. (2015). Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr. Opin. Plant Biol., No. 25, pp. 123-129.

37. Stern, K.R., Jansky, S. & Bidlack J.E. (2003). Introductory Plant Biology. 9th Edition. McGraw-Hill Companies, Inc., USA.

38. Stumskaya, M. & Wurtzela, E.T. (2013). The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci., No. 208, pp. 58-63.

39. Wellburn, A. (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., No. 144, pp. 307-313.