Fiziol. rast. genet. 2017, vol. 49, no. 3, 218-228, doi: https://doi.org/10.15407/frg2017.03.218

BIOMETRIC ANALYSIS OF TRANSGENIC PLANTS OF SPRING RAPE WITH cyp11A1 ANIMAL ORIGIN GENE AND BACTERIAL bar

Shishlova-Sokolovskaya A.M., Kartel N.A., Shishlov M.P.

  • State Scientific Institution «Institute of Genetics and Cytology, National Academy of Sciences of Belarus» 27 Academicheskaya St., Minsk, 220072, Belarus
  • Scientific and Practical Centre for Arable Farming, National Academy of Sciences of Belarus 1 Timiryazeva St., Zhodino, 222160, Belarus

The transgenic plants, carriers of cyp11A1 gene and bar gene in the genome, were received as a result of Agrobacterium-mediated rape transformation. The plants were characterized by the increase of the main truss (raceme) length, 1000 seeds’ mass, a number of pods and side shoots of the main truss (raceme) in generations compared to control. At the same time, the traits of 1000 seeds’ mass and plant height had the lowest variability.

Keywords: Brassica napus L. var. oleifera DC., transgenic plants, biometric analysis, gene cyp11A1, gene bar

Fiziol. rast. genet.
2017, vol. 49, no. 3, 218-228

Full text and supplemented materials

Free full text: PDF  

References

1. Kurochkina, S.D. & Kartel, N.A. (1998). Genetic transformation of plants, recombination processes and regulation of gene expression in transgenic plants. Molekulyarnaya genetika, mikrobiologiya, virusologiya, 4, pp. 3-12 [in Russian].

2. Marenkova, T.V. & Deyneko, E.V. (2015). Transgenic plants as models for studying the epigenetic regulation of gene expression. Vavilov Journal of Genetics and Breeding, 19 (5), pp. 545-551 [in Russian].

3. Raldugina, G.N., Gorelova, S.V. & Kozhemyakina, A.V. (2000).

4. Spyvak, S.G., Berdichivets, I.N. & Yarmolinskiy, D.G. (2009). Creation and characterization of transgenic tobacco plants (Nikotiana tabacum L.) expressing CYP11A1 cytochrome P450scc cDNA. Genetics, 45 (9), pp. 1217-1224 [in Russian].

5. Shishlova, A.M., Kartel, N.A. & Sahno, L.A. (2010). Introduction of CYP11A1 cytochrome P450scc cDNA of animal origin into rapeseed plants. Molekulyarnaya i prikladnaya genetika: sb. nauch. tr. In-ta genetiki i cytologii NAN Belarusi. Minsk, 11, pp. 12-19 [in Russian].

6. Shishlova-Sokolovskaya, A.M., Kuchuk, N.V., Shishlov, M.P. & Kartel, N.A. (2011). Production of transgenic spring rape plants (Brassica napus L. var. oleifera DC.) Expressing cytochrome P450scc cDNA of animal origin. Vestsi NANB. biyal. navuk., 1, pp. 27-33 [in Russian].

7. Bauer, P., Munkert, J., Brydziun, M., Burda, E., Muller-Uri, F., Groger, H., Muller, Y. & Kreis,W. (2010). Highly conserved progesterone 5b-reductase genes (P5bR) from 5b-cardenolide-free and 5b-cardenolide-producing angiosperms. Phytochemistry, 71, pp.1495-1505. https://doi.org/10.1016/j.phytochem.2010.06.004

8. Chashchin, V.L., Lapko, V.N. & Adamovich, T.B. (1986). Primary structure of the cholesterol side-chain cleavage cytochrome P-450 from bovine adrenocortical mitochondria and some aspects of its functioning on a structural level. Biochim. Biophys. Acta., 871, pp. 217-223. https://doi.org/10.1016/0167-4838(86)90176-7

9. Doty, S.L., James, C.A., Moore, A.L., Vaizovic, A., Singleton,G., Ma, C., Khan, Z., Xin, G., Kang, J., Park, J., Meilan, R., Meilan, R., Strauss, S., Wikerson, J., Farin, F. & Strand, S. (2007). Enchanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences USA, 104 (43), pp. 16816-16821. https://doi.org/10.1073/pnas.0703276104

10. Finsterbuch, A., Lindemann, P. & Grimm, R. (1999). D5-3b-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. - a multifunctional enzyme in steroid metabolism? Planta., 209, pp. 478-486. https://doi.org/10.1007/s004250050751

11. Hanischten Cate, C.H., Loonen Annelies, E.H.M. & Ottaviani, M.P. (1990). Frequent spontaneous deletions of Ri T-DNA in Agrobacterium rhizogenes transformed potato roots and regenerated plants. Plant Mol. Biol., 14, pp. 735-741. https://doi.org/10.1007/BF00016506

12. Herl, V., Fischer, G., Reva, V.A., Stiebritz, M., Muller, Y., Muller-Uri, F. & Kreis, W. (2009). The VEP1 gene (At4g24220) encodes a short-chain dehydrogenase/reductase with 3-oxo-D4,5-steroid 5b-reductase activity in Arabidopsis thaliana L. Biochimie, 91, pp. 517-525. https://doi.org/10.1016/j.biochi.2008.12.005

13. Iino, M., Nomura, T., Tanaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano,T. & Yokota, T. (2007). Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry, 68, 1664-1673. https://doi.org/10.1016/j.phytochem.2007.04.002

14. Inui, H., Shiota, N., Motoi, Y. & Ido, Y. (2001).Metabolism of herbicides and other chemicals in human cytochome P450 species and in transgenic potato plants co-expressing human CYP1A1, CYP2B6 and CYP2C19. Journal of Pesticide Sciences, 26, pp. 28-40. https://doi.org/10.1584/jpestics.26.28

15. Kawahigashi, H., Hirose, S., Ohkawa, H. & Ohkawa, Y. (2008). Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. Journal of Molecular Microbiology and Biotechnology, 15, pp. 212-219. https://doi.org/10.1159/000121332

16. Kim, Y.S., Lee, J. & Jun, S.-H. (1998). Frequent occurrence of transgene deletion in transgenic plants. Mol. Cells, 8, pp. 705-708.

17. Li, J., Biswas, M.G., Chao, A., Russel, D.W. & Chory, J. (1997). Conservation of function between mammalian and plant steroid 5-reductases. Proceedings of the National Academy of Sciences USA, 94, pp. 3554-3559. https://doi.org/10.1073/pnas.94.8.3554

18. Lindemann, P. & Luckner, M. (1997). Biosynthesis of pregnane derivatives in somatic embryons of Digitalis lanata. Phytochemistry, 46, No. 3, pp. 507-513. https://doi.org/10.1016/S0031-9422(97)00315-4

19. Miller, W.L. & Auchus, R.J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorder. Endocrine Reviews, 32, No. 4, pp. 579. https://doi.org/10.1210/er.2010-0013

20. Morohashi, K., Fujii-Kuriyama, Y., Okada, Y. & Sogawa, A. (1984). Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P450(SCC) of bovine adrenal cortex. Proceedings of the National Academy of Sciences USA, 8, 4647-4651. https://doi.org/10.1073/pnas.81.15.4647

21. Payne, A.H. & Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Reviews, 25, pp. 947-970. https://doi.org/10.1210/er.2003-0030

22. Russell, D.W. & Wilson, J.D. (1994). Steroid 5 alpha-reductase: two genes / two enzymes. Annual Review Biochemistry, 63, pp. 25-61. https://doi.org/10.1146/annurev.bi.63.070194.000325

23. Simersky, R., Novak, O., Morris, D.A. & Pouzar, V. (2009). Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. Journal of Plant Growth Regulation, 28, 125-136. https://doi.org/10.1007/s00344-009-9081-z

24. Werck-Reichart, D., Bak, S. & Paquette, S.M. (2002). Cytochromes P450. Arabidopsis book. Rockville: Amer. Society Plant Biol., pp. 1-28. https://doi.org/10.1199/tab.0028

25. Yamada, T., Ohashi, Y., Ohsima, M., Inui, H., Shiota, N., Ohkawa, H. & Ohkawa, Y. (2002). Inducible cross-tolerance to herbicides in transgenic potato plants with the rat CYP1A1 gene. Theor. Appl. Genet., 104, No. 2, pp. 308-314. https://doi.org/10.1007/s001220100736

26. Ylstra, B., Touraev, A., Brinkmann, A.T.O., Heberle- Bors, E. & Tunen,A.J.V. (1995). Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiology, 107, 639-643. https://doi.org/10.1104/pp.107.2.639

27. Ziegler, G.A., Vonrhein, C., Schulz, G.E. & Hanukoglu, I. (2000). Structures of adrenodoxin reductase and adrenodoxin support shuttle mechanism of electron transfer in mitochondrial P450 systems. Mol. Steroidogenesis. Tokyo: Univ. Acad. Press, pp. 61-64.