Fiziol. rast. genet. 2016, vol. 48, no. 5, 450-455, doi:

Effect of Agrobacterium rhizogenes-mediated transformation on the biologically active compounds content in Artemisia vulgaris L. transgenic roots

Drobot K.O.1, Ostapchuk A.M.2, Duplij V.P.1, Matvieieva N.A.1

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Zabolotnogo St., Kyiv, 03680, Ukraine
  2. D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine 154 Zabolotnogo St., Kyiv, 03680, Ukraine

Antioxidant activity, polyfructan and artemisinin content in the hairy root culture of Artemisia vulgaris L. were determined. Transgenic roots were obtained earlier using genetic transformation by Agrobacterium rhizogenes carrying ifn-a2b gene (pCB124 and pCB161 vectors) as well as A. rhizogenes A4 wild strain. Genetic transformation resulted in changes in artemisinin (0,237—1,02 and 0,687 mg/g dry weight in transformed and control roots respectively) and fructan (32—136 and 264 mg/g dry weight in transformed and control roots respectively) content. The genetic transformation didn’t affect antioxidant activity of extracts (55—74 % in transgenic root extracts and 66 % in control). Such changes in biological active compounds content in transgenic root lines didn’t depend on the vector used. This results suggest the possibility of Agrobacterium rhizogenes using for obtaining Artemisia vulgaris L. hairy root culture with higher artemisinin content.

Keywords: Artemisia vulgaris L., hairy root culture, artemisinin, fructans, antioxidant activity

Fiziol. rast. genet.
2016, vol. 48, no. 5, 450-455

Full text and supplemented materials

Free full text: PDF  


1. Drobot, K.O., Shakhovsky, A.M. & Matvieieva, N.A. (2015). Construction of Artemisia vulgaris L. hair root culture with human interferon alpha 2b gene. Factors in experimental evolution of organisms, 17, pp. 145-147 [in Ukrainian].

2. Matvieieva, N.A. & Drobot, K.O. (2015). The accumulation of fructans in the hairy root culture of medicinal plants. Fiziol. rast. genet., 47, No. 1, pp. 74-79 [in Ukrainian].

3. Revo, A.Y. (1971). High-quality microchemical reactions: Workshop on Organic Chemistry. Moskwa: Vysshaya shkola [in Russian].

4. Romakin, V.V. (2006). Computer analysis of data: Teaching. manual. Mykolayiv: Mykolayiv Publishing House State Humanitarian University named after Petro Mohyla [in Ukrainian].

5. Batra, J., Dutta, A., Singh, D., Kumar, S. & Sen, J. (2004). Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Reports, 23, No. 3, pp. 148-154.

6. Bowler, C., Montagu, M.V & Inze, D. (1992). Superoxide Dismutase and Stress Tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, No. 1, pp. 83-116.

7. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, No. 1, pp. 25-30.

8. Bulgakov, V.P., Gorpenchenko, T.Y., Veremeichik, G.N., Shkryl, Y.N., Tchernoded, G.K., Bulgakov, D.V., Aminin, D.L. & Zhuravlev, Y.N. (2012). The rolB Gene Suppresses Reactive Oxygen Species in Transformed Plant Cells through the Sustained Activation of Antioxidant Defense. Plant Physiology, 158, No. 3, pp. 1371-1381.

9. Cairns, A.J. (2003). Fructan biosynthesis in transgenic plants. Journal of Experimental Botany, 54, No. 382, pp. 549-567.

10. Chaudhuri, K.N., Ghosh, B., Tepfer, D. & Jha, S. (2006). Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Reports, 25, No. 10, pp. 1059-1066.

11. Erichsen-Brown, C. (1979). Medicinal and other uses of North American plants : a historical survey with special reference to the eastern Indian tribes. N.Y.: Dover Publications.

12. Fisher, R.A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions Royal Society Edinburgh, 52, pp. 399-433.

13. Gerasymenko, I.M., Sakhno, L.O., Mazur, M.G. & Sheludko, Y. V. (2012). Multiplex PCR assay for detection of human interferon alpha2b gene in transgenic plants. Cytology and Genetics, 46, No. 4, pp. 197-201.

14. Ihaka, R. & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5, No. 3, pp. 299-314.

15. Kaur, N. & Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences, 27, No. 7, pp. 703-714.

16. Kelly, G. (2008). Inulin-type prebiotics: a review: part 1. Alternative Med. Rev., 13, No. 4, pp. 315-29.

17. Lagrimini, L.M., Bradford, S. & Rothstein, S. (1990). Peroxidase-Induced Wilting in Transgenic Tobacco Plants. The Plant Cell, 2, No. 1, pp. 7-18.

18. Luchakivskaya, Y., Kishchenko, O., Gerasymenko, I., Olevinskaya, Z., Simonenko, Y., Spivak, M. & Kuchuk, M. (2011). High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Reports, 30, No. 3, pp. 407-415.

19. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, No. 9, pp. 405-410.

20. Murashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, No. 3, pp. 473-497.

21. Roberfroid, M.B. (2005). Introducing inulin-type fructans. British Journal of Nutrition, 93, No. S1, p. S13.

22. Sokal, R.R. & Rohlf, F.J. (1981). Biometry the principles and practice of statistics in biological research, 2nd edition. San Francisco: W. H. Freeman.