Фізіологія рослин і генетика 2022, том 54, № 3, 251-269, doi: https://doi.org/10.15407/frg2022.03.251

Роль аміно­кислот у регуляції стресостійкості культурних злакових рослин

Романенко К.О., Бабенко Л.М., Косаківська І.В.

  • Iнститут ботаніки ім. М.Г. Холодного Національної академії наук України 01601 Київ, вул. Терещенківська, 2

Вільні амінокислоти — попередники і складові протеїнів є активними учасниками метаболічних і фізіологічних процесів на різних етапах онтогенезу злаків. За дії абіотичних і біотичних стресорів їхній вміст істотно зростає, тому амінокислоти можна розглядати як біомаркери стресового стану. Накопичений значний масив даних вказує на кореляцію між здатністю до акумуляції ендогенних амінокислот і стресостійкістю рослин. Гіперсинтез амінокислот підтримує клітинний тургор, осмотичний баланс, сприяє стабілізації мембран. Такі протекторні ефекти заважають витоку електролітів із клітин, знижують вміст активних форм кисню (АФК), запобігають «оксидному вибуху». В огляді розглянуто та обговорено мультиплексну роль амінокислот у рослинах, що зазнають впливу абіотичних стресорів, окрему увагу зосереджено на активації антиоксидантних систем захисту. Метаболічну регуляцію за участі амінокислот розглядають як основну стратегію захисту і виживання рослин за несприятливих умов існування. В статті наведено приклади успішного використання екзогенних амінокислот та їхніх похідних для поліпшення стресостійкості й урожайності культурних злаків, використання препаратів амінокислот у рослинництві.

Ключові слова: амінокислоти, пролін, гліцин бетаїн, абіотичний стресор, стійкість, злаки

Фізіологія рослин і генетика
2022, том 54, № 3, 251-269

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Begcy, K. & Dresselhaus, T. (2018). Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reprod., 31, pp. 343-355. https://doi.org/10.1007/s00497-018-0343-4

2. Dresselhaus, T. & Huckelhoven, R. (2018). Biotic and abiotic stress responses in crop plants. Agronomy, 8, 267. https://doi.org/10.3390/agronomy8110267

3. Lamaoui, M., Jemo, M., Datla, R. & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Front. Chem., 6, 26. https://doi.org/10.3389/fchem.2018.00026

4. Shahzad, B., Tanveer, M., Hassan, W., Shah, A.N., Anjum, S.A., Cheema, S.A. & Ali, I. (2016). Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review. Plant Physiol. Biochem., 107, pp. 104-115. https://doi.org/10.1016/j.plaphy.2016.05.034

5. Shahzad, B., Tanveer, M., Rehman, A., Cheema, S.A., Fahad, S., Rehman, S. & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment - A review. Plant Physiol. Biochem., 132, pp. 641-651. https://doi.org/10.1016/j.plaphy.2018.10.014

6. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24, No. 13, p. 2452. https://doi.org/10.3390/molecules24132452

7. Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ., 36, No 12, pp. 2085-2103. https://doi.org/10.1111/pce.12122

8. Szabados, L. & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci., 15, No. 2, pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

9. Moe, L.A. (2013). Amino acids in the rhizosphere: from plants to microbes. Amer. J. Bot., 100, No 9, pp. 1692-1705. https://doi.org/10.3732/ajb.1300033

10. Ali, Q., Athar, H.-ur-R., Haider, M.Z., Shahid, S., Aslam, N., Shehzad, F., Naseem, J., Ashraf, R., Ali, A. & Hussain, S.M. (2019). Role of amino acids in improving abiotic stress tolerance to plants. In: Hasanuzzaman, M., Fujita, M., Oku, H. & Islam, M.T. (Eds.). Plant Tolerance to Environmental Stress. Role of Phytoprotectants (pp. 175-203), Boca Raton: CRC Press. https://doi.org/10.1201/9780203705315-12

11. Ganie, S.A. (2021). Amino acids other than proline and their participation in abiotic stress tolerance. In: Wani, S.H., Gangola, M.P. & Ramadoss, B.R. (Eds.) Compatible Solutes Engineering for Crop Plants Facing Climate Change (pp. 47-96), Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_3

12. Hildebrandt, T.M., Nunes, N.A., Araujo, W.L. & Braun, H.P. (2015). Amino acid catabolim in plants. Mol. Plant., 8, pp. 1563-1579. https://doi.org/10.1016/j.molp.2015.09.005

13. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzalka, K. & Prasad, M.N.V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant., 35, pp. 985-999. https://doi.org/10.1007/s11738-012-1169-6

14. Less, H. & Galili, G. (2008). Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol. 147, pp. 316-330. https://doi.org/10.1104/pp.108.115733

15. Araujo, W.L., Tohge, T., Ishizaki, K., Leaver, C.J. & Fernie, A.R. (2011). Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci., 16, pp. 489-498. https://doi.org/10.1016/j.tplants.2011.05.008

16. Kirma, M., Araujo, W.L., Fernie, A.R. & Galili, G. (2012). The multifaceted role of aspartate-family amino acids in plant metabolism. J. Exp. Bot., 63, pp. 4995-5001. https://doi.org/10.1093/jxb/ers119

17. Hausler, R.E., Ludewig, F. & Krueger, S. (2014). Amino acids - a life between metabolism and signaling. Plant Sci., 229, pp. 225-237. https://doi.org/10.1016/j.plantsci.2014.09.011

18. Solomon, P.S., Tan, K.-C. & Oliver, R.P. (2003). The nutrient supply of pathogenic fungi; a fertile field for study. Mol. Plant Pathol., 4, pp. 203-210. https://doi.org/10.1046/j.1364-3703.2003.00161.x

19. Rico, A. & Preston, G.M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant-Microbe Interact., 21, pp. 269-282. https://doi.org/10.1094/MPMI-21-2-0269

20. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments. Plant Signal Behav., 7, No 11, pp. 1456-1466. https://doi.org/10.4161/psb.21949

21. Noroozlo, Y.A., Souri, M.K. & Delshad, M. (2019). Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agric., 4, pp. 164-172. https://doi.org/10.1515/opag-2019-0016

22. Langridge, P., Paltridge, N. & Fincher, G. (2006). Functional genomics of abiotic stress tolerance in cereals. Brief. Funct. Genomics., 4, No. 4, pp. 343-354. https://doi.org/10.1093/bfgp/eli005

23. Farooq, M., Hussain, M. & Siddique, K.H.M. (2014). Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci., 33, pp. 331-349. https://doi.org/10.1080/07352689.2014.875291

24. Farooq, M., Hussain, M., Wakeel, A. & Siddique, K.H.M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev., 35, pp. 461-481. https://doi.org/10.1007/s13593-015-0287-0

25. Ashraf, M. & Harris, P.J. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166, pp. 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024

26. Rai, V. (2002). Role of amino acids in plant responses to stresses. Biol. Plant., 45, pp. 481-487. https://doi.org/10.1023/A:1022308229759

27. Alia, S.P.P. & Mohanty, P. (1997). Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J. Photochem. Photobiol., 38, pp. 253-257. https://doi.org/10.1016/S1011-1344(96)07470-2

28. Trovato, M., Mattioli, R. & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rend. Fis. Acc. Lincei, 19, pp. 325-346. https://doi.org/10.1007/s12210-008-0022-8

29. Ashraf, M. & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59, No. 2, pp. 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

30. Nahar, K., Hasanuzzaman, M. & Fujita, M. (2016). Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal, N., Nazar, R. & A. Khan, N. (Eds.). Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (pp. 37-68), Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_4

31. Asseng, S., Ewert, F., Martre, P., Rotter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W. & Reynolds, M.P. (2015). Rising temperatures reduce global wheat production. Nat. Clim. Chang., 5, pp. 143-147. https://doi.org/10.1038/nclimate2470

32. Naidu, B.P., Paleg, L.G., Aspinall, D., Jennings, A.C. & Jones, G.P. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry, 30, No. 2, pp. 407-409. https://doi.org/10.1016/0031-9422(91)83693-F

33. Vainer, A.A., Kolupaev, Yu.E. & Obozny, A.I. (2014). Influence of exogenous proline on hydrogen peroxide content in wheat seedlings and formation of induced heat resistance. Fiziol. rast. genet., 46, No. 3, pp. 252-258 [in Russian].

34. Vainer, A.A., Kolupaev, Yu.E., Yastreb, T.O. & Obozny, A.I. (2014). Exogenous proline inhibits the increase in the activity of antioxidant enzymes in wheat seedlings caused by hardening heating. Visn. Hark. nac. agrar. univ., Ser. Biol., 1, No. 31, pp. 66-71 [in Russian].

35. Ryabchun, N.I., Kolupaev, Yu.E., Vainer, A.A., Yastreb, T.O., Obozny, A.I. & Chetverik, A.N. (2015). Components of the antioxidant system of genotypes of winter wheat seedlings differing in frost resistance. Agrochemistry, 1, pp. 73-81 [in Russian].

36. Babenko, L.M., Romanenko, K.O. & Kosakivska, I.V. (2020). Stress temperature and soil drought effects on amino acid composition of winter wheat. Dopov. Nac. Akad. nauk Ukr., 2, pp. 87-92. https://doi.org/10.15407/dopovidi2020.02.087

37. Aghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar, F., Irandoost, H. & Sharifi, P. (2011). Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr. J. Biotechnol., 10, No. 39, pp. 7617-7621.

38. Gosavi, G., Jadhav, A.S., Kale, A., Gadakh, S.R., Pawar, B. & Chimote, V.P. (2014). Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. Indian J. Biotechnol., 13, pp. 356-363.

39. Dionisio-Sese, M., Shono, M. & Tobita, S. (2000). Effects of proline and betaine on heat inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase in crude extracts of rice seedlings. Photosynthetica, 36, pp. 557-563. https://doi.org/10.1023/A:1007044121420

40. Kauffman, G.L., Kneivel, D.P. & Watschke, T.L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science., 47, No. 1, p. 261. https://doi.org/10.2135/cropsci2006.03.0171

41. Botta, A. (2013). Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic., 1009, pp. 29-35. https://doi.org/10.17660/ActaHortic.2013.1009.1

42. Shumilina, J.S., Kuznetsova, A.V, Frolov, A.A. & Grishina, T.V. (2018). Drought as a form of abiotic stress and physiological markers of drought stress. J. Stress Physiol. Biochem., 14, No. 4, pp. 5-15.

43. Chaves, M.M., Flexas, J. & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103, pp. 551-560. https://doi.org/10.1093/aob/mcn125

44. Koocheki, A.R., Yazdansepas, A., Mahmadyorov, U. & Mehrvar, M.R. (2014). Physiological-based selection criteria for terminal drought in wheat (Triticum aestivum L.). J. Agr. Sci. Tech., 16, pp. 1043-1053.

45. Aghanejad, M., Mahfoozi, S. & Sharghi, Y. (2015). Effects of late-season drought stress on some physiological traits, yield and yield components of wheat genotypes. Biol. Forum Int. J., 7, No. 1, pp. 1426-1431.

46. Saeidi, M. & Abdoli, M. (2015). Effect of drought stress during grain filling on yield and its components, gas exchange variables and some physiological traits of wheat cultivars. J. Agr. Sci. Tech.,17, No. 4, pp. 885-898.

47. Liu, Y., Bowman, B.C., Hu, Y.G., Liang, X., Zhao, W., Wheeler, J., Klassen, N., Bockelman, H., Bonman, J.M. & Chen, J. (2017). Evaluation of agronomic traits and drought tolerance of winter wheat accessions from the USDA-ARS national small grains collection. Agronomy, 7, p. 51. https://doi.org/10.3390/agronomy7030051

48. Singh, T.N., Aspinall, D. & Paleg, L.G. (1972). Proline accumulation and varietal adaptability to drought in barley: A potential metabolic measure of drought resistance. Nature New Biol., 236, pp. 188-190. https://doi.org/10.1038/newbio236188a0

49. Mali, P.C. & Mehta, S.L. (1977). Effect of drought on enzyme and free proline in rice varieties. Phytochemistry, 16, pp. 1355-1358. https://doi.org/10.1016/S0031-9422(00)88781-6

50. Karpets, Yu.V., Kolupaev, Yu.E., Grigorenko, D.A., Firsova, E.N. Karpets, Yu.V., Kolupaev, Yu.E., Grigorenko, D.A. & Firsova, E.N. (2016). Response of barley plants of various genotypes to soil drought and the action of a nitric oxide donor. Visn. Hark. nac. agrar. univ., Ser. Biol., 2, No. 38, pp. 194-105 [in Russian].

51. Templer, S.E,. Ammon, A.,. Pscheidt, D., Ciobotea, O., Schuy, C. & McCollum, C. (2017). Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J. Exp. Bot., 68, pp. 1697-1713. https://doi.org/10.1093/jxb/erx038

52. Rajagopal, V. & Sinha, S.K. (1980). Influence of exogenously supplied proline on relative water content in wheat and barley. Indian J. Exp. Biol., 18, pp. 1523-1524.

53. Thakur, P.S. & Rai, V.K. (1985). Exogenously supplied amino acids and water deficits in Zea mays cultivars. Biol. Plant., 27, pp. 458-461. https://doi.org/10.1007/BF02894717

54. Yang, C.W., Lin, C.C. & Kao, C.H. (2000). Proline, ornithine, arginine and glutamic acid contents in detached rice leaves. Biol. Plant. 43, pp. 305-307. https://doi.org/10.1023/A:1002733117506

55. Sergeeva, L.E., Bronnikova, L.I. & Dykun, M.O. (2016). Proline in maize plants and cell cultures under the action of osmotic stresses in vitro. Fakt. eksp. evol. org., 18, pp. 145-148 [in Russian].

56. Ivanov, A.A. (2013). Combined effect of water and salt stress on the photosynthetic activity of wheat leaves of different ages. Fiziol. rast. genet., 45, No. 2, pp. 155-163 [in Russian].

57. Sharma, P. & Dubey, R.S. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J. Plant Physiol., 162, pp. 854-889. https://doi.org/10.1016/j.jplph.2004.09.011

58. Obozny, A.I., Kolupaev, Yu.E. & Yastreb, T.O. (2013). The activity of superoxide dismutase and the content of low molecular weight protective compounds in the formation of cross-resistance of wheat seedlings to thermal and osmotic stress. Agrochemistry, 8, pp. 59-67 [in Russian].

59. Maevskaya, S.N. & Nikolaeva, M.K. (2013). Response of antioxidant and osmoprotective systems of wheat seedlings to drought and rehydration. Russ. J. Plant Physiol., 60, pp. 343-350. https://doi.org/10.1134/S1021443713030084

60. Mattioni, C., Lacerenza, N.G., Troccoli, A., De Leonardo, A.M. & di Fonzo, N. (1999). Water and salt-induced alteration in proline metabolism of Triticum durum seedlings. Physiol. Plant., 101, pp. 787-792. https://doi.org/10.1111/j.1399-3054.1997.tb01064.x

61. Kumar, V., Shriram, V., Hoque, T.S., Hasan, M.M., Burritt, D.J. & Hossain, M.A. (2017). Glycine betaine mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. In: Sarwat, M., Ahmed, A., Abdin, M.Z. & Ibrahim, M.M. (Eds.). Stress Signaling in Plants: Genomics and Proteomics Perspective, Vol. 2 (pp. 111-133), Springer, Cham. https://doi.org/10.1007/978-3-319-42183-4_5

62. Qamar, R., Noreen, S., Safdar, M. & Babar, M.E. (2019). Influence of exogenous application of proline on some physio-biochemical parameters of maize (Zea mays L.) under drought stress. Int. J. Sci. Res., 9, No. 8, pp. 858-869. https://doi.org/10.29322/IJSRP.9.08.2019.p92117

63. Talat, A., Nawaz, K., Hussian, K., Bhatti, K.H., Siddiqi, E.H., Khalid, A., Anwer, S. & Sharif, M.U. (2013). Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) cultivars. World Appl. Sci. J., 22, pp. 547-554. https://doi.org/ 10.5829/idosi.wasj.2013.22.04.19570

64. Demiralay, M., Altuntas, C., Sezgin, A., Terzi, R. & Kadioglu, A. (2017). Application of proline to root medium is more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought. Turk. J. Biol., 41, pp. 649-660. https://doi.org/10.3906/biy-1702-19

65. Kuznetsov, V.V. & Shevyakova, N.I. (1999). Proline under stress: biological role, metabolism, and regulation. Russ. J. Plant Physiol., 46, pp. 321-336.

66. Chen, C. & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA, 102, No. 9, pp. 3459-3464. https://doi.org/10.1073/pnas.0407960102

67. Sharma, S.S. & Dietz, K.J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57, pp. 711-726. https://doi.org/10.1093/jxb/erj073

68. Singh, R.P., Jha, P. & Jha, P.N. (2017). Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J. Plant Growth Regul., 36, pp. 783-798. https://doi.org/10.1007/s00344-017-9683-9

69. Parihar, P., Singh, S., Singh, R., Singh, V.P. & Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut Res., 22, No. 6, pp. 4056-4075. https://doi.org/10.1007/s11356-014-3739-1

70. Yadav, R.K., Datta, A. & Dagar, J.C. (2019). Future research needs: way forward for combating salinity in climate change scenario. In: Dagar, J., Yadav, R. & Sharma, P. (Eds.). Research Developments in Saline Agriculture (pp. 883-899), Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_31

71. Verbruggen, N. & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, No. 4, pp. 753-759. https://doi.org/10.1007/s00726-008-0061-6

72. Ahanger, M.A., Tomar, N.S., Tittal, M., Argal, S. & Agarwal, R.M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants, 23, No. 4, pp. 731-744. https://doi.org/10.1007/s12298-017-0462-7

73. Abd El-Samad H., Shaddad, M.A.K. & Barakat, N. (2011). Improvement of plants salt tolerance by exogenous application of amino acids. J. Medicinal Plants Res., 5, No. 24, pp. 5692-5699.

74. Chutipaijit, S., Cha-um, S. & Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust. J. Crop Sci., 5, No. 10, pp. 1191-1198.

75. Nounjan, N., Nghia, P.T. & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol., 169, No. 6, pp. 596-604. https://doi.org/10.1016/j.jplph.2012.01.004

76. Wu, D., Cai, S., Chen, M., Ye, L., Chen, Z., Zhang, H., Dai, F., Wu, F. & Zhang, G. (2013). Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One, 8, No. 1, pp. e55431. https://doi.org/10.1371/journal.pone.0055431

77. Abedini, M. (2016). Physiological responses of wheat plant to salinity under different concentrations of Zn. Acta Biol. Szeged., 60, No. 1, pp. 9-16.

78. Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Maximova, E., Fuggi, A. & Carillo, P. (2017). Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front. Plant Sci., 7, p. 2035. https://doi.org/10.3389/fpls.2016.02035

79. Ferchichi, S., Hessini, K., Dell'Aversana E., D'Amelia L., Woodrow, P., Ciarmiello, L.F., Fuggi, A. & Carillo, P. (2018). Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct. Plant Biol., 45, pp. 1096-1109. https://doi.org/10.1071/FP18046

80. Carillo, P., Mastrolonardo, G., Nacca, F. & Fuggi, A. (2005). Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct. Plant Biol., 32, pp. 209-219. https://doi.org/10.1071/FP04184

81. Wang, H., Liu, D., Sun, J. & Zhang, A. (2005). Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J. Plant Physiol., 162, pp. 81-89. https://doi.org/10.1016/j.jplph.2004.07.006

82. Hussein, M.M., Balbaa, L.K. & Gaballah, M.S. (2007). Salicylic acid and salinity effects on growth of maize plants. Res. J. Agric. Biol. Sci., 3, No. 4, pp. 321-328.

83. Roy, D., Basu, N., Bhunia, A. & Banerjee, S.K. (1993). Counteraction of exogenous l-proline with NaCl in salt-sensitive cultivar of rice. Biol. Plant., 35, pp. 69-72. https://doi.org/10.1007/BF02921122

84. Mahboob, W., Khan, M.A. & Shirazi, M.U. (2016). Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pak. J. Bot., 48, No. 3, pp. 861-867.

85. Hamilton, E.W. & Heckathorn, S.A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol., 126, No. 3, pp. 1266-1274. https://doi.org/10.1104/pp.126.3.1266

86. Lutts, S., Majerus, V. & Kinet, J.-M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiol. Plant., 105, pp. 450-458. https://doi.org/10.1034/j.1399-3054.1999.105309.x

87. Rahman, M.S., Miyake, H. & Takeoka, Y. (2002). Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci., 5, pp. 33-44. https://doi.org/10.1626/pps.5.33

88. Yang, X. & Lu, C. (2005). Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol. Plant., 124, pp. 343-352. https://doi.org/10.1111/j.1399-3054.2005.00518.x

89. Salama, K.H., Mansour, M.M. & Al-Malawi, H.A. (2015). Glycinebetaine priming improves salt tolerance of wheat. Biologia, 70, pp. 1334-1339. https://doi.org/10.1515/biolog-2015-0150

90. Raza, S.H., Athar, H.R., Ashraf, M. & Hameed, A. (2007). Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot., 60, pp. 368-376. https://doi.org/10.1016/j.envexpbot.2006.12.009

91. Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. Sci World J., 756120. https://doi.org/10.1155/2015/756120

92. Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S. & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater., 270, pp. 102-109. https://doi.org/10.1016/j.jhazmat.2014.01.044

93. Neilson, S. & Rajakaruna, N. (2015). Phytoremediation of agricultural soils: Using plants to clean metal-contaminated arable land. In: Ansari, A., Gill, S., Gill, R., Lanza, G. & Newman, L. (Eds.). Phytoremediation (pp. 159-168). Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_11

94. Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci., 180, No. 2, pp. 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016

95. Tripathi, P., Tripathi, R.D., Singh, R.P., Dwivedi, S., Chakrabarty, D., Trivedi, P.K. & Adhikari, B. (2012). Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ. Sci. Pollut. Res., 20, No. 2, pp. 884-896. https://doi.org/10.1007/s11356-012-1205-5

96. Dave, R., Singh, P.K., Tripathi, P., Shri, M., Dixit, G., Dwivedi, S., Chakrabarty, D., Trivedi, P.K., Sharma, Y.K., Dhankher, O.P., Corpas, F.J., Barroso, J.B. & Tripathi, R.D. (2013). Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch. Environ. Contam. Toxicol., 64, No. 2, pp. 235-242. https://doi.org/10.1007/s00244-012-9818-8

97. Lesko, K., Stefanovits-Banyai, E., Pais, I. & Simon-Sarkadi, L. (2002). Effect of cadmium and titanium-ascorbate stress on biological active compounds in wheat seedlings. J. Plant Nutr., 25, No. 11, pp. 2571-2581. https://doi.org/10.1081/PLN-120014714

98. Azooz, M.M., Abou-Elhamd, M.F. & Al-Fredan, M.A. (2012). Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust. J. Crop Sci., 6, No. 4, pp. 688-694.

99. Kumar, V., Awasthi, G. & Chauhan, P.K. (2012). Cu and Zn tolerance and responses of the biochemical and physiochemical system of wheat. J. Stress Physiol. Biochem., 8, No. 3, pp. 203-213.

100. Asopa, P.P., Bhatt, R., Sihag, S., Kothari, S.L. & Kachhwaha, S. (2016). Effect of cadmium on physiological parameters of cereal and millet plants - A comparative study. Int. J. Phytoremediation, 19, No. 3, pp. 225-230. https://doi.org/10.1080/15226514.2016.1207608

101. Chen, C.T., Chen, L.M., Lin, C.C. & Kao, C.H. (2001). Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci., 160, No. 2, pp. 283-290. https://doi.org/10.1016/S0168-9452(00)00393-9

102. Hussain, I., Akhtar, S., Ashraf, M.A., Rasheed, R., Siddiqi, E.H. & Ibrahim, M. (2013). Response of maize seedlings to cadmium application after different time intervals. Int. Sch. Res. Noticer, 169610. https://doi.org/10.1155/2013/169610

103. Nagoor, S. (1999). Physiological and biochemical responses of cereal seedlings to graded levels of heavy metals. II. Effects on protein metabolism in maize seedlings. Adv. Plant Sci., 12, pp. 425-433.

104. Pal, M., Horvath, E., Janda, T., Paldi, E. & Szalai, G. (2006). Physiological changes and defense mechanisms induced by cadmium stress in maize. J. Plant Nutr. Soil Sci., 169, No. 2, pp. 239-246. https://doi.org/10.1002/jpln.200520573

105. Rastgoo, L., Alemzadeh, A. & Afsharifar, A. (2011). Isolation of two novel isoforms encoding zinc- and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics, 4, No. 7, pp. 377-383

106. Lesko, K. & Simon-Sarkadi, L. (2002). Effect of cadmium stress on amino acid and polyamine content of wheat seedlings. Period. Polytech. Chem. Eng., 46, No. 1-2, pp. 65-71.

107. Ferreira, C., Vieira, C. L., Azevedo, H. & Caldeira, G. (1998). The effects of high levels of Hg on senescence, prolin accumulation and stress enzymes activities of maize plants. Agrochim., 42, pp. 208-218.

108. Kumar, A., Dwivedi, S., Singh, R.P., Chakrabarty, D., Mallick, S., Trivedi, P.K. & Tripathi, R.D. (2014). Evaluation of amino acid profile in contrasting arsenic accumulating rice genKumarotypes under arsenic stress. Biol. Plant., 58, No. 4, pp. 733-742. https://doi.org/10.1007/s10535-014-0435-4

109. Noreen, S., Akhter, M.S., Yaamin, T. & Arfan, M. (2018). The ameliorative effects of exogenously applied proline on physiological and biochemical parameters of wheat (Triticum aestivum L.) crop under copper stress condition. J. Plant Interact., 13, pp. 221-230. https://doi.org/10.1080/17429145.2018.1437480

110. Song, M., Xu, W., Peng, X. & Kong, F. (2013). Effects of exogenous proline on the growth of wheat seedlings under cadmium stress. Ying Yong Sheng Tai Xue Bao, 24, No. 1, pp. 113-129.

111. Wang, F., Zeng, B., Sun, Z. & Zhu, C. (2009). Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Arch. Environ. Con. Tox., 56, No. 4, pp. 723-731. https://doi.org/10.1007/s00244-008-9226-2

112. Bhatti, K.H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E.H., Sharif, R.U., Talat, A. & Khalid, A. (2013). Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle East J. Sci. Res., 14, pp. 130-137. https://doi.org/10.5829/idosi.mejsr.2013.14.1.19550

113. Rasheed, R., Ashraf, M.A., Hussain, I., Haider, M.Z., Kanwal, U. & Iqbal, M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Braz. J. Bot., 37, pp. 399-406. https://doi.org/10.1007/s40415-014-0089-7

114. Dalir, N. & Khoshgoftarmanesh, A.H. (2014). Symplastic and apoplastic uptake and root to shoot translocation of nickel in wheat as affected by exogenous amino acids. J. Plant Physiol., 171, No. 7, pp. 531-536. https://doi.org/10.1016/j.jplph.2013.12.011

115. Zhou, Z., Zhou, J., Li, R., Wang, H.-Y. & Wang, J. (2007). Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant Soil., 292, pp. 105-117. https://doi.org/10.1007/s11104-007-9206-8

116. Rigo, A., Corazza, A., di Paolo, M.L., Rossetto, M., Ugolini, R. & Scarpa, M. (2004). Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem., 98, No. 9, pp. 1495-1501. https://doi.org/10.1016/j.jinorgbio.2004.06.008

117. Wang, W., Cang, L., Zhou, D.M. & Yu, Y.C. (2017). Exogenous amino acids increase antioxidant enzyme activities and tolerance of rice seedlings to cadmium stress. Environ. Prog. Sustain. Energy, 36, No. 1, pp. 155-161. https://doi.org/10.1002/ep.12474

118. Handa, N., Kohli, S.K., Kaur, R., Sharma, A., Kumar, V., Thukral, A.K. & Bhardwaj, R. (2018). Role of compatible solutes in enhancing antioxidative defense in plants exposed to metal toxicity. In: Hasanuzzaman, M., Nahar, K. & Fujita, M. (Eds.). Plants Under Metal and Metalloid Stress (pp. 207-228). Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_7

119. Kumar, D.A., Kumar, N., Ranjan, R., Gauta, A., Pande, V. Sanyal, I. & Mallick, S. (2018). Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes. Ecotoxicol. Environ. Saf., 148, pp. 410-417. https://doi.org/10.1016/j.ecoenv.2017.10.047

120. Rai, K.& Agrawal, S.B. (2017). Effects of UV-B radiation on morphological, physiological and biochemical aspects of plants: an overview. J. Sci. Res. Banaras Hindu University, 61, pp. 87-113.

121. Hideg, E., Jansen, M.A. & Strid, A. (2013). UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci., 18, pp. 107-115. https://doi.org/10.1016/j.tplants.2012.09.003

122. Erram, N., Gaddameedi, A., Siddamalla, S., Reddy, T.V. & Bhanoori, M. (2017). Effect of enhanced UV-B radiation on germination and biochemical components of maize (Zea Mays L.). Biosci. Biotechnol. Res. Asia., 14, No. 3, https://doi.org/10.13005/bbra/2522

123. Yang, J., Chen, T. & Wang, X. (2000). Effect of enhanced UV-B radiation on endogenous ABA and free proline contents in wheat leaves. Acta Ecol. Sin. 20, No 1, pp. 39-42.

124. Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ., 24, pp. 1334-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x

125. Tian, X.R. & Lei, Y.B. (2007). Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Rus. J. Plant Physiol., 54, No. 5, pp. 676-682. https://doi.org/10.1134/S1021443707050160

126. Bandurska, H., Pietrowska-Borek, M. & Cieslak, M. (2012). Response of barley seedlings to water deficit and enhanced UV-B irradiation acting alone and in combination. Acta Physiol. Plant., 34, pp. 161-171. https://doi.org/10.1007/s11738-011-0814-9

127. Zu, Y., Li, Y., Chen, J. & Chen, H. (2004). Intraspecific responses in grain quality of 10 wheat cultivars to enhanced UV-B radiation under field conditions. J. Photochem. Photobiol. B., 74, No. 2-3, pp. 95-100. https://doi.org/10.1016/j.jphotobiol.2004.01.006

128. Feduraev, P., Skrypnik, L., Riabova, A., Pungin, A., Tokupova, E., Maslennikov, P. & Chupakhina, G. (2020). Phenylalanine and tyrosine as exogenous precursors of wheat (Triticum aestivum L.) secondary metabolism through PAL-associated pathways. Plants, 9, No. 4, p. 476. https://doi.org/10.3390/plants9040476

129. Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R. & Rouphael, Y. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci., 8, p. 2202. https://doi.org/10.3389/fpls.2017.02202

130. Rouphael, Y. & Colla, G. (2020). Editorial: biostimulants in agriculture. Front. Plant Sci., 11, 40. https://doi.org/10.3389/fpls.2020.00040

131. Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R. & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic., 196, pp. 28-38. https://doi.org/10.1016/j.scienta.2015.08.037