Фізіологія рослин і генетика 2021, том 53, № 1, 29-54, doi: https://doi.org/10.15407/frg2021.01.029

Iндукований мутагенез пшениці: від радіоактивного опромінення до специфічного редагування генів

Кіщенко О.1,2, Степаненко А.1,2, Борисюк М.1

  1. Хуаїнський університет загальної освіти, Факультет наук про життя  111 Вест Чангджіанг Роуд, Хуа'ян, 223300, Китай
  2. Iнститут клітинної біології та генетичної інженерії Національної академії наук України 03143 Київ, вул. Академіка Заболотного, 148

Пшениця (Triticum aestivum L.) займає найбільші посівні площі серед сільськогосподарських культур і є важливим джерелом енергії, поживних речовин, клітковини й білка в раціоні людини. Незважаючи на значний ріст урожайності пшениці за часів «зеленої революції», продовольчі потреби людства також зростають. Створення високопродуктивних сортів із поліпшеними характеристиками стає дедалі актуальнішим зі збільшенням чисельності населення планети. Iз початку ХХ ст. для збільшення різноманітності рослинного матеріалу в селекційну роботу почали впроваджувати штучний мутагенез із використанням радіоактивного опромінення і різноманітних хімічних сполук. Ці методи виявились ефективними інструментами індукування широко­го спектра мутацій, однак переважна їх більшість небажана і потребує нейтралізації шляхом копіткої роботи із застосуванням зворотних схрещувань. Натомість редагування геному за допомогою сайтспецифічних ендонуклеаз забезпечує точні, ефективні й цільові модифікації в обраних локусах. Розглянуто історичні аспекти розвитку технологій індукованого мутагенезу та редагування геному за допомогою керованих ендонуклеаз. Серед систем, придатних для редагування геному, найширше використовують CRISPR/Cas-технологію через її простоту та відносну легкість спрямованого редагування генів різних організмів, у тому числі й пшениці з її складним гексаплоїдним геномом. Детально описано напрями застосування системи CRISPR/Cas для надання пшениці нових поліпшених властивостей. Особливу увагу приділено розробці новітніх технологій на основі існуючих систем редагування геному для створення гібридів пшениці. Узагальнено перспективи подальшого використання редагування геному пшениці для поліпшен­ня її продуктивності і харчової цінності. Обговорено регуляторну законодавчу базу щодо виробництва та використання організмів, отриманих із залученням методів цілеспрямованого мутагенезу.

Ключові слова: Triticum aestivum L., пшениця, індукований мутагенез, редагування геному, CRISPR/Cas9

Фізіологія рослин і генетика
2021, том 53, № 1, 29-54

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. http://www.fao.org/faostat

2. http://www.ukrstat.gov.ua

3. Rubalka, O.I. Quality of wheat and its improvement. Kyiv: Logos, 2011. 496 p. [in Ukrainian].

4. Henry, R.J., Rangan, P. & Furtado, A. (2016). Functional cereals for production in new and variable climates. Curr. Opin. Plant Biol., 30, pp. 11-18. https://doi.org/10.1016/j.pbi.2015.12.008

5. Evenson, R.E. & Gollin, D. (2003). Assessing the impact of the green revolution, 1960 to 2000. Science, 300, No. 5620, pp. 758-762. https://doi.org/10.1126/science.1078710

6. Langridge, P. (2013). Wheat genomics and the ambitious targets for future wheat production. Genome, 56, No. 10, pp. 545-547. https://doi.org/10.1139/gen-2013-0149

7. Yadav, D., Shavrukov, Y., Bazanova, N., Chirkova, L., Borisjuk, N., Kovalchuk, N., Ismagul, A., Parent, B., Langridge, P., Hrmova, M. & Lopato, S. (2015). Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J. Exp. Bot., 66, pp 6635-6650. https://doi.org/10.1093/jxb/erv370

8. Bi, H., Shi, J., Kovalchuk, N., Luang, S., Bazanova, N., Chirkova, L., Zhang, D., Shavrukov, Y., Stepanenko, A., Tricker, P., Langridge, P., Hrmova, M., Lopato, S. & Borisjuk, N. (2018). Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions: Characterisation of TaSHN1 from wheat. Plant Cell Environ., 41, pp. 2549-2566. https://doi.org/10.1111/pce.13339

9. Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A. & Shavrukov, Y. (2019). Genetic modification for wheat improvement: from transgenesis to genome editing. Biomed Res. Int., 2019, pp. 1-18. https://doi.org/10.1155/2019/6216304

10. Metje-Sprink, J., Sprink, T. & Hartung, F. (2020). Genome-edited plants in the field. Curr. Opin. Biotechnol., 61, pp. 1-6. https://doi.org/10.1016/j.copbio.2019.08.007

11. Zhang, Y., Malzahn, A.A., Sretenovic, S. & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants, 5, pp. 778-794. https://doi.org/10.1038/s41477-019-0461-5

12. Bayer, P.E., Golicz, A.A., Scheben, A., Batley, J. & Edwards, D. (2020). Plant pan-genomes are the new reference. Nat. Plants, 6, pp. 914-920. https://doi.org/10.1038/s41477-020-0733-0

13. Henry, R.J. (2020). Cereal genomics databases and plant genetic resources in crop improvement. Methods Mol. Biol., 2072, pp. 9-14. https://doi.org/10.1007/978-1-4939-9865-4_2

14. The International Wheat Genome Sequencing Consortium (IWGSC). Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Sharpe, A.G., Barad, O., Baruch, K., Keeble-Gagnиre, G., Mascher, M., Ben-Zvi, G., Josselin, A.-A., Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Simkova, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhasz, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Bartos, J., Bellec, A., Berges, H., Dolezel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O.-A., Singh, K., Valarik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., ‡ihalikova, J., Toegelova, H., Vrana, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Golds, T., ‡izkova, J., Akpinar, B.A., Biyiklioglu, S,. Gao, L., N'Daiye, A., Kubalakova, M., Safaй, J., Alfama, F., Adam-Blondon, A.-F., Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Maclachlan, R., Tan, Y., Alberti, A., Aury, J.-M., Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holusova, K., Plihal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcarkova, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu J., Cattonaro, F., Jiumeng, M., Kugler, K., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpova, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W. & Wang, L. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, Iss. 6403, eaar7191, pp. 1-16. doi: https://doi.org/10.1126/science.aar7191

15. Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Communications, 9, No. 1911, pp. 1-13. https://doi.org/10.1038/s41467-018-04252-2

16. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol., 70, pp. 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049

17. Chen, K. & Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep., 33, pp. 575-583. https://doi.org/10.1007/s00299-013-1539-6

18. Koeppel, I., Hertig, C., Hoffie, R. & Kumlehn, J. (2019). Cas endonuclease technology - a quantum leap in the advancement of barley and wheat genetic engineering. Int. J. Mol. Sci., 20, Iss. 11, E2647, pp. 1-24. https://doi.org/10.3390/ijms20112647

19. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, pp. 816-821. https://doi.org/10.1126/science.1225829

20. Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cбrdenas, M.L. Tricoli, D.M., Van Eck, J., Voytas, D.F., Walbot, V., Wang, K., Zhang, Z.J. & Stewart, C.N.Jr. (2016). Advancing crop transformation in the era of genome editing. Plant Cell., 28, No. 7, pp. 1510-1520. https://doi.org/10.1105/tpc.16.00196

21. Kumar, R., Kaur, A., Pandey, A., Mamrutha, H.M. & Singh, G.P. (2019). CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol. Biol. Reports, 46, pp. 3557-3569. https://doi.org/10.1007/s11033-019-04761-3

22. Chen, G., Zhou, Y., Kishchenko, O., Stepanenko, A., Jatayev, S., Zhang, D. & Borisjuk, N. (2020). Gene editing to facilitate hybrid crop production. Biotechnology Advances, In Press. https://doi.org/10.1016/j.biotechadv.2020.107676

23. Wang, K., Gong, Q. & Ye, X. (2020). Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theor. Appl. Genet., 133, pp. 1603-1622. https://doi.org/10.1007/s00122-019-03464-4

24. Arabidopsis, Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, pp. 796-815. https://doi.org/10.1038/35048692

25. Sasaki, T. (2005). The map-based sequence of the rice genome. Nature, 436, pp. 793-800. https://doi.org/10.1038/nature03895

26. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C. & Jackson, S.A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, pp. 178-183. https://doi.org/10.1038/nature08670

27. Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S.M., Belter, E., Du, F., Kim, K., Abbott, R.M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S.M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M.J., McMahan, L., Van Buren, P., Vaughn, M.W., Ying, K., Yeh, C.-T., Emrich, S.J., Jia, Y., Kalyanaraman, A., Hsia, A.-P., Barbazuk, W.B., Baucom, R.S., Brutnell, T.P., Carpita, N.C., Chaparro, C., Chia, J.-M., Deragon, J.-M., Estill, J.C., Fu, Y., Jeddeloh, J.A., Han, Y., Lee, H., Li, P., Lisch, D.R., Liu, S., Liu, Z., Nagel, D.H., McCann, M.C., SanMiguel, P., Myers, A.M., Nettleton, D., Nguyen, J., Penning, B.W., Ponnala, L., Schneider, K.L., Schwartz, D.C., Sharma, A., Soderlund, C., Springer, N.M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T.K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J.L., Dawe, R.K., Jiang, J., Jiang, N., Presting, G.G., Wessler, S.R., Aluru, S., Martienssen, R.A., Clifton, S.W., McCombie, W.R., Wing, R.A. & Wilson, R.K. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science, 326, pp. 1112-1115. https://doi.org/10.1126/science.1178534

28. Voytas, D.F. & Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol., 12, e1001877, pp 1-6. https://doi.org/10.1371/journal.pbio.1001877

29. Dobrovidova, O. (2019). Russia joins in global gene-editing bonanza. Nature, 569, pp. 319-320. https://10.1038/d41586-019-01519-6. https://doi.org/10.1038/d41586-019-01519-6

30. Friedrichs, S., Takasu, Y., Kearns, P., Dagallier, B., Oshima, R., Schofield, J. & Moreddu, C. (2019). An overview of regulatory approaches to genome editing in agriculture. Biotec. Res. Innov., 3, pp. 208-220. https://doi.org/10.1016/j.biori.2019.07.001

31. Muller, H.J. (1927). Artificial transmutation of the gene. Science, 66, pp. 84-87. https://doi.org/10.1126/science.66.1699.84

32. Stadler, L.J. (1928). Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci. USA, 14, Iss. 1, pp. 69-75. https://doi.org/10.1073/pnas.14.1.69

33. Pacher, M. & Puchta, H. (2017). From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J., 90, pp. 819-833. https://doi.org/10.1111/tpj.13469

34. Rapoport, I.A. (1946). Carbonyl compounds and the chemical mechanism of mutations. Dokl. USSR Academy of Sciences, 54, No. 1, pp. 65-68 [in Russian].

35. Auerbach, C. & Robson, J. (1946). Chemical production of mutations. Nature, 157, pp. 302. https://doi.org/10.1038/157302a0

36. Dhaliwal, A.K., Mohan, A., Sidhu, G., Maqbool, R. & Gill, K.S. (2015). An ethylmethane sulfonate mutant resource in pre-green revolution hexaploid wheat. PLoS One, 10, Iss. 12, e0145227, pp.1-15. https://doi.org/10.1371/journal.pone.0145227

37. Novak, F.J. & Brunner, H. (1992). Plant breeding: induced mutation technology for crop improvement. IAEA Bulletin, pp. 25-33.

38. Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, pp. 187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

39. Fitzgerald, T.L., Powell, J.J., Stiller, J., Weese, T.L., Abe, T., Zhao, G,. Jia, J., McIntyre, C.L., Li, Z., Manners, J.M. & Kazan, K. (2015). An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.) PLoS One, 10, Iss. 2, e0117369, pp. 1-23. https://doi.org/10.1371/journal.pone.0117369

40. Kharkwal, M.C., Pandey, R.M. & Pawar, S.E. (2004). Mutation breeding in crop improvement. In Plant Breeding - Mendelian to Molecular Approaches. Jain, H.K., Kharkwal, M.C. (Eds). New Delhi: Narosa Publishing House, pp. 601-645 https://doi.org/10.1007/978-94-007-1040-5_26

41. Sovovб, T., Kerins, G., Demnerova, K. & Ovesnб, J. (2017). Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr. Issues Mol. Biol., 21, pp. 41-62. https://doi.org/10.21775/ cimb.021.041 41-62.

42. Parry, M.A.J., Madgwick, P.J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., Rakszegi, M., Hamada, W., Al-Yassin, A., Ouabbou, H., Labhilili, M. & Phillips, A.L. (2009). Mutation discovery for crop improvement. J. Exp. Bot., 60, No. 10, pp. 2817-2825. https://doi.org/10.1093/jxb/erp189

43. McCallum, C.M., Comai, L., Greene, E.A. & Heniko, S. (2000). Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol., 123, pp. 439-442. https://doi.org/10.1104/pp.123.2.439

44. Colbert, T., Till, B.J., Tompa, R., Reynolds, S., Steine, M.N., Yeung, A.T., McCallum, C.M., Comai, L. & Henikoff, S. (2001). High-throughput screening for induced point mutations. Plant Physiol., 126, pp. 480-484. https://doi.org/10.1104/pp.126.2.480

45. Xiong, H., Zhou, C., Guo, H., Xie, Y., Zhao, L., Gu, J., Zhao, S., Ding, Y. & Liu, L. (2020). Transcriptome sequencing reveals hotspot mutation regions and dwarfing mechanisms in wheat mutants induced by g-ray irradiation and EMS. J Radiat Res., 61, pp. 44-57. https://doi.org/10.1093/jrr/rrz075

46. Uauy, C., Paraiso, F., Colasuonno, P., Tran, R.K., Tsai, H., Berardi, S., Comai, L. & Dubcovsky, J. (2009). A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol., 9, pp. 115-129. https://doi.org/10.1186/1471-2229-9-115

47. Krasileva, K.V., Vasquez-Gross, H.A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., Simmonds, J., Ramirez-Gonzalez, R.H., Wang, X., Borrill, P., Fosker, C., Ayling, S., Phillips, A.L., Uauy, C. & Dubcovsky, J. (2017). Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA, 114, Iss. 6, pp. E913-E921. https://doi.org/10.1073/pnas.1619268114

48. Rawat, N., Schoen, A., Singh, L., Mahlandt, A., Wilson, D.L., Liu, S., Lin, G., Gill, B.S. & Tiwari, V.K. (2018). TILL-D: an Aegilops tauschii TILLING resource for wheat improvement. Front. Plant Sci., 9, 1665, pp. 1-9. https://doi.org/10.3389/fpls.2018.01665

49. Rawat, N., Sehgal, S.K., Joshi, A., Rothe, N., Wilson, D.L., McGraw, N., Vadlani, P.V., Li, W. & Gill, B.S. (2012). A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol., 12, No. 205, pp. 1-11. https://doi.org/10.1186/1471-2229-12-205

50. Acevedo-Garcia, J., Spencer, D., Thieron, H., Reinst¬dler, A., Hammond-Kosack, K., Phillips, A.L., & Panstruga, R. (2017). mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J., 15, pp. 367-378. https://doi.org/10.1111/pbi.12631

51. Ingvardsen, C.R., Massange-Sanchez, J.A., Borum, F., Uauy, C. & Gregersen, P.L. (2019). Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theor. Appl. Genet. 132, No. 11, pp. 3009-3022. https://doi.org/10.1007/s00122-019-03402-4

52. Sestili, F., Garcia-Molina, M.D., Gambacorta, G., Beleggia, R., Botticella, E., De Vita, P., Savatin, D.V., Masci, S. & Lafiandra, D. (2019). Provitamin A biofortification of durum wheat through a TILLING approach. Int. J. Mol. Sci., 20, No. 5703, pp. 1-14. https://doi.org/10.3390/ijms20225703

53. Guo, H., Liu, Y., Li, X., Yan, Z., Xie, Y., Xiong, H., Zhao, L., Gu, J., Zhao, S. & Liu, L. (2017). Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics, 18, No. 358, pp. 1-10. https://doi.org/10.1186/s12864-017-3724-4

54. Sestili, F., Palombieri, S., Botticella, E., Mantovani, P., Bovina, R. & Lafiandra, D. (2015). TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Sci., 233, pp. 127-133. https://doi.org/10.1016/j.plantsci.2015.01.009

55. Chen, A. & Dubcovsky, J. (2012). Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet., 8, No. 12, e1003134, pp. 1-12. https://doi.org/10.1371/journal.pgen.1003134

56. Wallace, R.B., Schold, M., Johnson, M.J., Dembek, P. & Itakura, K. (1981). Oligonucleotide directed mutagenesis of the human b-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res., 9, pp. 3647-3656. https://doi.org/10.1093/nar/9.15.3647

57. Puchta, H., Dujon, B. & Hohn, B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res., 21, No. 22, pp. 5034-5040. https://doi.org/10.1093/nar/21.22.5034

58. Rouet, P., Smih, F. & Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol., 14, No. 12, pp. 8096-8106. https://doi.org/10.1128/MCB.14.12.8096

59. Vu, G.T.H., Cao, H.X., Watanabe, K., Hensel, G., Blattner, F.R., Kumlehn, J. & Schubert, I. (2014). Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell, 26, pp. 2156-2167. https://doi.org/10.1105/tpc.114.126607

60. Kim, Y.G., Cha, J. & Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA, 93, pp. 1156-1160. https://doi.org/10.1073/pnas.93.3.1156

61. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, No. 4, pp. 773-782. https://doi.org/10.1534/genetics.111.131433

62. Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worden, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Zhifang, G., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregor, P.D. & Urnov, F.D. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, No. 7245, pp. 437-441. https://doi.org/10.1038/nature07992

63. Jung, Y.-J., Nogoy, F.M., Lee, S.-K., Cho, Y.-G. & Kang, K.-K. (2018). Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol. Bioprocess Eng., 23, No. 1, pp. 108-115. https://doi.org/10.1007/s12257-017-0420-9

64. Lahaye, T. & Bonas, U. (2001). Molecular secrets of bacterial type III effector proteins. Trends Plant Sci., 6, pp. 479-485. https://doi.org/10.1016/S1360-1385(01)02083-0

65. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, pp. 1509-1512. https://doi.org/10.1126/science.1178811

66. Pattanayak, V., Guilinger, J.P. & Liu, D.R. (2014). Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol., 546, pp. 47-78. https://doi.org/10.1016/B978-0-12-801185-0.00003-9

67. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J. & Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res., 39, e82, pp. 1-11, https://doi.org/10.1093/nar/gkr218

68. Sprink, T., Metje, J. & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr. Opin. Biotechnol., 32, pp. 47-53. https://doi.org/10.1016/j.copbio.2014.11.010

69. Wang, Y., Zong, Y. & Gao, C. (2017). Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. Methods Mol. Biol., 1679, pp. 169-185. https://doi.org/10.1007/978-1-4939-7337-8_11

70. Luo, M., Li, H., Chakraborty, S., Morbitzer, R., Rinaldo, A., Upadhyaya, N., Bhatt, D., Louis, S., Richardson, T., Lahaye, T. & Ayliffe, M. (2019). Efficient TALEN-mediated gene editing in wheat. Plant Biotechnol J., 17, pp. 2026-2028. https://doi.org/10.1111/pbi.13169

71. Chen, D.F. & Dale, P.J. (1992). A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res., 1, pp. 93-100. https://doi.org/10.1007/BF02513026

72. Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A. & Liu, D.R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576, pp. 149-157. https://doi.org/10.1038/s41586-019-1711-4

73. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J.M., Wolf, Y.I., Yakunin, A.F., van der Oost, J. & Koonin, E.V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, pp. 467-477. https://doi.org/10.1038/nrmicro2577

74. Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X. & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351, pp. 84-88. https://doi.org/10.1126/science.aad5227

75. Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z. & Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529, Iss. 7587, pp. 490-495. doi: htttps://doi.org/10.1038/ nature16526 https://doi.org/10.1038/nature16526

76. Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O. & Toki, S. (2019). Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat Plants, 5, pp. 14-17. https://doi.org/10.1038/s41477-018-0321-8

77. Walton, R.T., Christie, K.A., Whittaker, M.N. & Kleinstiver, B.P. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368, pp. 290-296. https://doi.org/10.1126/science.aba8853

78. Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Commun., 9, 1911, pp. 1-13. https://doi.org/10.1038/s41467-018-04252-2

79. Xu, X. & Qi, L.S. (2019). A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol., 431, pp. 34-47. https://doi.org/10.1016/j.jmb.2018.06.037

80. Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.-F., Zhang, Y. & Qi, Y. (2015). A CRISPR-Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol., 169, pp.971-985. https://doi.org/10.1104/pp.15.00636

81. Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E.R., Zhang, Y. & Qi, Y. (2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants, 3, 17018. https://doi.org/10.1038/nplants.2017.18

82. Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E. & Gersbach, C.A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol., 33, pp. 510-517. https://doi.org/10.1038/nbt.3199

83. Zong, Y., Wang, Y., Li C., Zhang, R., Chen, K., Ran, Y., Qiu, J.-L., Wang, D. & Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, pp. 438-440. https://doi.org/10.1038/nbt.3811

84. Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.-L. & Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol., 36, pp. 950-953. https://doi.org/10.1038/nbt.4261

85. Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song ,Q., Zhang, R. & Gao, C. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol., 19, 59, pp. 1-9. https://doi.org/10.1186/s13059-018-1443-z

86. Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L. & Gao, C. (2019). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants, 5, pp. 480-485. https://doi.org/10.1038/s41477-019-0405-0

87. Anzalone, A.V., Koblan, L.W. & Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol., 38, pp. 824-844. https://doi.org/10.1038/s41587-020-0561-9

88. Marzec, M. & Hensel, G. (2020). Prime editing: game changer for modifying plant genomes. Trends Plant Sci., 25, pp. 722-724. https://doi.org/10.1016/j.tplants.2020.05.008

89. Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., Liu, D.R. & Gao, C. (2020). Prime genome editing in rice and wheat. Nat. Biotechnol., 38, pp. 582-585. https://doi.org/10.1038/s41587-020-0455-x

90. Kim, E., Koo, T., Park, S.W., Kim, D., Kim, K., Cho, H.-Y., Song, D.W., Lee, K.J., Jung, M.H., Kim, S., Kim, J.H., Kim, J.H. & Kim, J.-S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun., 8, 14500. https://doi.org/10.1038/ncomms14500

91. Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.-F., Sontheimer, E.J. & Thomson, J.A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA, 110, pp. 15644-15649. https://doi.org/10.1073/pnas.1313587110

92. Mojica, F.J.M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, pp. 733-740. https://doi.org/10.1099/mic.0.023960-0

93. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. & Zhang, F. (2015). Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, pp. 759-771. https://doi.org/10.1016/j.cell.2015.09.038

94. Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y. & Zhang, F. (2017). RNA targeting with CRISPR-Cas13. Nature, 550, pp. 280-284. https://doi.org/10.1038/nature24049

95. Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J. & Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science, 358, pp. 1019-1027. https://doi.org/10.1126/science.aaq0180

96. Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N. & Hsu, P.D. (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 173, pp. 665-676.e14. https://doi.org/10.1016/j.cell.2018.02.033

97. Komarnytsky, S. & Borisjuk, N. (2003). Functional analysis of promoter elements in plants. In: Genetic Engineering. Genetic engineering: principles and methods, 25, Setlow J.K. (Ed.) (pp. 113-141). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0073-5_6

98. Aman, R., Ali, Z., Butt, H., Mahas, A., Aljedaani, F., Khan, M.Z., Ding, S. & Mahfouz, M. (2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol., 19, pp. 1-9. https://doi.org/10.1186/s13059-017-1381-1

99. Mikami, M., Toki, S. & Endo, M. (2017). In planta processing of the SpCas9-gRNA complex. Plant Cell Physiol., 58, pp. 1857-1867. https://doi.org/10.1093/pcp/pcx154

100. Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C. & Voytas, D.F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR-Cas9. Plant J., 89, pp. 1251-1262. https://doi.org/10.1111/tpj.13446

101. Cermak, T., Curtin, S.J., Gil-Humanes, J., Cegan, R., Kono, T.J.Y., Konecna, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L. & Voytas, D.F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29, pp. 1196-1217. https://doi.org/10.1105/tpc.16.00922

102. Xie, K., Minkenberg, B. & Yang, Y. (2015). Boosting CRISPR-Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA, 112, pp. 3570-3575. https://doi.org/10.1073/pnas.1420294112

103. Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Goodwin, M.J., Aryee, M.J. & Joung, J.K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol., 32, pp. 569-576. https://doi.org/10.1038/nbt.2908

104. Gao, Y. & Zhao, Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for for CRISPR-mediated genome editing. J. Integr. Plant Biol., 56, pp. 343-349. https://doi.org/10.1111/jipb.12152

105. Kurata, M., Wolf, N.K., Lahr, W.S., Weg, M.T., Kluesner, M.G., Lee, S., Hui, K., Shiraiwa, M., Webber, B.R. & Moriarity, B.S. (2018). Highly multiplexed genome engineering using CRISPR-Cas9 gRNA arrays. PLOS One, 13, e0198714. https://doi.org/10.1371/journal.pone.0198714

106. Wang, W., Pan, Q., He F., Akhunova, A., Chao, S., Trick, H. & Akhunov, E. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J., 1, pp. 65-74. https://doi.org/10.1089/crispr.2017.0010

107. Ding, D., Chen, K., Chen, Y., Li, H. & Xie, K. (2018). Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol. Plant, 11, pp. 542-552. https://doi.org/10.1016/j.molp.2018.02.005

108. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.-L. & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 31, pp. 686-688. https://doi.org/10.1038/nbt.2650

109. Shan, Q., Wang, Y., Li J. & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocols, 9, No. 10, pp. 2395-2410. https://doi.org/10.1038/nprot.2014.157

110. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.-L. & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR-Cas9 DNA or RNA. Nat. Commun., 7, No. 12617, pp. 1-8. https://doi.org/10.1038/ncomms12617

111. Liang, Z., Chen, K., Li, T., Zhang ,Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y. & Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 8, No. 14261, pp. 1-5. https://doi.org/10.1038/ncomms14261

112. Arndell, T., Sharma, N., Langridge, P., Baumann, U., Watson-Haigh, N.S. & Whitford, R. (2019). gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnology, 19, pp. 71-89. https://doi.org/10.1186/s12896-019-0565-z

113. Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D.F. & Kagale, S. (2018). Targeted mutagenesis in wheat microspores using CRISPR-Cas9. Sci. Rep., 8, No. 6502, pp. 1-10. https://doi.org/10.1038/s41598-018-24690-8

114. Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 3, pp. 2233-2238. https://doi.org/10.1534/g3.113.008847

115. Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N. & Imai, R. (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep., 8, No. 14422, pp. 1-7. https://doi.org/10.1038/s41598-018-32714-6

116. Singh, M., Kumar, M., Albertsen, M.C., Young, J.K. & Cigan, A.M. (2018). Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol., 97, pp. 371-383. https://doi.org/10.1007/s11103-018-0749-2

117. Howells, R.M., Craze, M., Bowden, S. & Wallington, E.J. (2018). Efficient generation of stable, heritable gene edits in wheat using CRISPR-Cas9. BMC Plant Biol., 18, No. 215, pp. 1-11. https://doi.org/10.1186/s12870-018-1433-z

118. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. & Qiu, J.-L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 32, pp. 947-951. https://doi.org/10.1038/nbt.2969

119. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. & Cigan, M.A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 7, No. 13274, pp. 1-7. doi; https://doi.org/10.1038/ncomms13274

120. Grohmann, L., Keilwagen, J., Duensing, N., Dagand, E., Hartung, F., Wilhelm, R., Bendiek, J. & Sprink, T. (2019). Detection and identification of genome editing in plants: challenges and opportunities. Front. Plant Sci., 10, No. 236, https://doi.org/10.3389/fpls.2019.00236

121. Liang, Z., Chen, K., Yan, Y., Zhang, Y. & Gao, C. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol. J., 16, pp. 2053-2062. https://doi.org/10.1111/pbi.12938

122. Wang, W., Pan, Q., Tian, B., He, F., Chen, Y., Bai, G., Akhunova, A., Trick, H.N. & Akhunov, E. (2019). Gene editing of the wheat homologs of TONNEAU 1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J., 100, pp. 251-264. https://doi.org/10.1111/tpj.14440

123. Xu, H., Zhao, M., Zhang, Q., Xu, Z. & Xu, Q. (2016). The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed. Sci., 66, pp. 659-667. https://doi.org/10.1270/jsbbs.16120

124. Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G. & Li, H. (2016). Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR-Cas9 system. Front. Plant Sci., 7, pp. 377-377. https://doi.org/10.3389/fpls.2016.00377

125. Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimenez, M.J., Sousa, C., Voytas, D.F. & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR-Cas9. Plant Biotechnol. J., 16, pp. 902-910. https://doi.org/10.1111/pbi.12837

126. Jouanin, A., Schaart, J.G., Boyd, L.A., Cockram, J., Leigh, F.J., Bates, R., Wallington, E.J., Visser, R.G.F. & Smulders, M.J.M. (2019). Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of a- and g-gliadin gene families. BMC Plant Biol., 19, No. 333, pp. 1-16. https://doi.org/10.1186/s12870-019-1889-5

127. Garcнa-Molina, M.D., Gimѕnez, M.J., Sбnchez-LeЩn, S. & Barro, F. (2019). Gluten Free Wheat: Are We There? Nutrients, 11, No. 3, pp. 1-13. https://doi.org/10.3390/nu11030487

128. Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., Jiang, D., Ma & Y., Xia, L. (2020). Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J., 5, pp. 1-15. doi: 10.1111/pbi.13519. https://doi.org/10.1111/pbi.13519

129. Kamiya, Y., Abe, F., Mikami, M., Endo, M. & Kawaura, K. (2020). A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat. Plant Biotechnol., 37, pp. 247-251. https://doi.org/10.5511/plantbiotechnology.20.0404b

130. Nalam, V.J., Alam, S., Keereetaweep, J., Venables, B., Burdan, D., Lee, H., Trick, H.N., Sarowar, S., Makandar, R. & Shah, J. (2015). Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol. Plant Microbe Interact., 28, pp. 1142-1152. https://doi.org/10.1094/MPMI-04-15-0096-R

131. Frye, C.A., Tang, D. & Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA, 98, pp. 373-378. https://doi.org/10.1073/pnas.011405198

132. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C. & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J., 91, pp. 714-724. https://doi.org/10.1111/tpj.13599

133. Lu, S., Zhao, H., Des Marais, D.L., Parsons, E.P., Wen, X., Xu, X., Bangarusamy, D.K., Wang, G., Rowland, O., Juenger, T., Bressan, R.A. & Jenks, M.A. (2012). Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol., 159, pp. 930-944. https://doi.org/10.1104/pp.112.198697

134. Kishchenko, O., Zhou, Y., Jatayev, S., Shavrukov, Y. & Borisjuk, N. (2020). Gene editing applications to modulate crop flowering time and seed dormancy. BIOTECH, 1, pp. 233-245. https://doi.org/10.1007/s42994-020-00032-z

135. Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T & Sato, K (2019) Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep., 28, pp. 1362-1369. https://doi.org/10.1016/j.celrep.2019.06.090

136. Gupta, P.K., Balyan, H.S., Gahlaut, V., Saripalli, G., Pal, B., Basnet, B.R. & Joshi, A.K. (2019). Hybrid wheat: past, present and future. Theor. Appl. Genet., 132, pp. 2463-2483. https://doi.org/10.1007/s00122-019-03397-y

137. Tucker, E.J., Baumann, U., Kouidri, A., Suchecki, R., Baes, M., Garcia, M., Okada, T., Dong, C., Wu, Y., Sandhu, A., Singh, M., Langridge, P., Wolters, P., Albertsen, M.C., Cigan, A.M. & Whitford, R. (2017). Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat. Commun., 8, No. 869, pp. 1-10. https://doi.org/10.1038/s41467-017-00945-2

138. Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson-Haigh, N.S., Tucker, E.J., Baumann, U., Langridge, P. & Whitford, R. (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J., 17, Iss. 10, pp. 1905-1913. https://doi.org/10.1111/pbi.13106

139. Wang, Z., Li, J., Chen, S., Heng, Y., Chen, Z., Yang, J., Zhou, K., Pei, J., He, H., Deng, X.W. & Ma, L. (2017). Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. USA, 114, pp. 12614-12619. https://doi.org/10.1073/pnas.1715570114

140. Liu, C., Zhong, Y., Qi, X., Chen, M., Liu, Z., Chen, C., Tian, X., Li, J., Jiao, Y., Wang, D., Wang, Y., Li, M., Xin, M., Liu, W., Jin, W. & Chen, S. (2020). Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J., 18, pp. 316-318. https://doi.org/10.1111/pbi.13218

141. Kelliher, T., Starr, D., Su, X., Tang, G., Chen, Z., Carter, J., Wittich, P.E., Dong, S., Green, J., Burch, E., McCuiston, J., Gu, W., Sun, Y., Strebe, T., Roberts, J., Bate, N.J. & Que, Q. (2019). One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol., 37, pp. 287-292. https://doi.org/10.1038/s41587-019-0038-x

142. Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu, J., Sahoo, G. & Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants, 4, pp. 530-533. https://doi.org/10.1038/s41477-018-0193-y

143. Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., Pei, X. & Ye, X. (2020). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot., 71, pp. 1337-1349. https://doi.org/10.1093/jxb/erz529

144. Scheben, A., Wolter, F., Batley, J., Puchta, H. & Edwards, D. (2017). Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytol., 216, No. 3, pp. 682-698. https://doi.org/10.1111/nph.14702

145. Zhang, Y., Malzahn, A.A., Sretenovic, S. & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants, 5, pp. 778-794. https://doi.org/10.1038/s41477-019-0461-5

146. http://crdd.osdd.net/servers/crisprge/links.php

147. http://www.addgene.org/crispr/reference/

148. Zheng, Y., Zhang, N., Martin, G.B. & Fei, Z. (2019). Plant genome editing database (PGED): a call for submission of information about genome-edited plant mutants. Mol. Plant, 12, No. 2, pp. 127-129. https://doi.org/10.1016/j.molp.2019.01.001

149. Clough, S.J. & Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, pp. 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

150. Toda, E., Koiso, N., Takebayashi, A., Ichikawa, M., Kiba, T., Osakabe, K., Osakabe, Y., Sakakibara, H., Kato, N. & Okamoto, T. (2019). An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat. Plants., 5, No. 4, pp. 363-368. https://doi.org/10.1038/s41477-019-0386-z

151. Maryenti, T., Kato, N., Ichikawa, M. & Okamoto, T. (2019). Establishment of an in vitro fertilization system in wheat (Triticum aestivum L.). Plant Cell Physiol., 60, pp. 835-843. https://doi.org/10.1093/pcp/pcy250

152. Maher, M.F., Nasti, R.A., Vollbrecht, M., Starker, C.G., Clark, M.D. & Voytas, D.F. (2020). Plant gene editing through de novo induction of meristems. Nat Biotechnol., 38, No. 1, pp. 84-89. https://doi.org/10.1038/s41587-019-0337-2

153. Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P.M., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, C., Register, J., Zhao, Z.Y., Xu, D., Jones, T. & Gordon-Kamm, W. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell., 28, No. 9, pp. 1998-2015. https://doi.org/10.1105/tpc.16.00124

154. Gleba, Y., Klimyuk, V. & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol., 18, pp. 134-141. https://doi.org/10.1016/j.copbio.2007.03.002

155. Liu, H. & Zhang, B. (2020). Virus-based CRISPR/Cas9 genome editing in plants. Trends Gen., 36, pp. 810-813. https://doi.org/10.1016/j.tig.2020.08.002

156. Li, C., Zhang, R., Meng, X., Chen, S., Zong, Y., Lu, C., Qiu, J.-L., Chen, Y.-H., Li, J. & Gao, C. (2020). Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol., 38, pp. 875-882. https://doi.org/10.1038/s41587-019-0393-7

157. Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y. & Xia, L. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci., 8, 298, pp. 1-15. https://doi.org/10.3389/fpls.2017.00298

158. Ledford, H. & Callaway, E. (2020). Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature, 586, pp. 346-347. https://doi.org/10.1038/d41586-020-02765-9