Фізіологія рослин і генетика 2020, том 52, № 6, 528-537, doi: https://doi.org/10.15407/frg2020.06.528

Вплив піклораму на морфогенез калюсних культур селекційно-цінних генотипів озимої пшениці за Agrobacterium-опосередкованої трансформації

Дубровна О.В., Сливка Л.В.

  • Iнститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17

Досліджено вплив синтетичного ауксину — піклораму на частоту утворення морфогенного калюсу та регенерацію пагонів після Agrobacterium-опосередкованої трансформації селекційно-цінних генотипів озимої пшениці. Показано, що за наявності в поживному середовищі піклораму утворювався калюс більшої маси, здатний до тривалішого культивування в умовах in vitro порівняно з калюсом, утвореним на середовищі з 2,4-Д, і при цьому зберігаючи регенераційну здатність. У калюсів, отриманих на середовищі з 2,4-Д, було більше некрозів і тканини переходили до морфогенного стану на 3—5 діб пізніше, ніж калюси, отримані на середовищах із піклорамом. Максимальна кількість морфогенного калюсу в усіх досліджених генотипів утворювалась на середовищі з додаванням піклораму в концентрації 2 мг/л. Життєздатність морфогенного калюсу, отриманого на середовищі з піклорамом, перевищувала тривалість культивування калюсу, отриманого на середовищі з 2,4-Д, в середньому на 30 діб. Встановлено, що за наявності піклораму в середовищах для регенерації зростала частота утворення пагонів за генетичної трансформації пшениці. На середовищі з добавлянням цього ауксину в концентрації 2 мг/л отримано найбільшу кількість регенерантів. За такої концентрації піклораму достовірно збільшувалось число рослин порівняно із се­редовищем, що містило IОК. Регенераційний потенціал калюсів, отриманих на середовищі з 2,4-Д, після генетичної трансформації зберігався максималь­но протягом 2 пасажів, тоді як рослини-регенеранти з калюсу, що утворювався на середовищі з піклорамом, отримували протягом 3—4 пасажів.

Ключові слова: Triticum aestivum, піклорам, морфогенез, Agrobacterium-опосередкована трансформація

Фізіологія рослин і генетика
2020, том 52, № 6, 528-537

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Abdul, R., Ma, Z. & Wang, H. (2010). Genetic Transformation of Wheat (Triticum aestivum L.): A Review. Triticeae Genomics and Genetics, 1, No. 2, pp. 1-7. https://doi.org/10.5376/tgg.2010.01.0002

2. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Biotechnology of wheat: cell selection and genetic engineering. Kyiv: Logos [in Ukrainian].

3. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sci., 5, pp. 1-11. https://doi.org/10.3389/fpls.2014.00628

4. Bhalla, P., Ottenhof, H. & Singh, M. (2006). Wheat transformation an update of recent progress. Euphytica, 149, pp. 353-366. https://doi.org/10.1007/s10681-006-9087-6

5. Ding, L. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Rep., 36, pp. 29-36. https://doi.org/10.1007/s11033-007-9148-5

6. Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N. & Harwood, W.A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, 121. https://doi.org/10.1186/s13007-019-0503-z

7. Abid, N., Maqbool, A. & Malik, K. (2014). Screening commercial wheat (Triticum aestivum L.) varieties for Agrobacterium mediated transformation ability. Pakistan J. Agricult. Sci., 51, No. 1, pp. 83-89.

8. He, Y., Jones, H.D., Chen, S., Chen, X.M., Wang, D.W., Li, K.X., Wang, D.S. & Xia, L.Q. (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J. Exp. Bot., 61, pp. 1567-1581. https://doi.org/10.1093/jxb/erq035

9. Khurana, J., Chugh, A. & Khurana, P. (2002). Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum diccocum Schuble). Indian J. Exp. Biol., 40, pp. 1295-1303.

10. Mahalakshmi, A. & Khurana, P. (1995). Agrobacterium-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L.). J. Biochem. and Biotechnol., 4, No. 2, pp. 55-59. https://doi.org/10.1007/BF03262953

11. Tao, L., Du, L., Xu, H. & Ye, X. (2011). Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agricult. Sci. in China, 10, pp. 317-326. https://doi.org/10.1016/S1671-2927(11)60010-2

12. Wang, Y., Xiao, X. & Zhang, A. (2002). Factors affecting Agrobacterium tumefaciens-mediated transformation of wheat (Triticum aestivum L.). Acta Genetica Sinica, 29, No. 3, pp. 260-265.

13. Tamas, C., Szucs, P., Rakszegi, M., Tamas, L. & Bedo, Z. (2004). Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell, Tissue and Organ Culture, 79, pp. 39-44. https://doi.org/10.1023/B:TICU.0000049447.81409.ed

14. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol Biol., 1223, pp. 189-198. https://doi.org/10.1007/978-1-4939-1695-5_15

15. Sarker, R.H. & Biswas, A. (2002). In vitro plantlet regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum aestivum L.). Plant Tissue Culture, 12, No. 2, pp. 155-165.

16. Medvecka, E. & Harwood, W. (2015). Wheat (Triticum aestivum L.) transformation using mature embryos. Methods Mol. Biol., 1223, pp. 199-209. https://doi.org/10.1007/978-1-4939-1695-5_16

17. Tang, Z., Ren, Z., Wu, F., Fu, S., Wang, X. & Zhang, H. (2006). The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system. Agricultural Sciences in China, 5, pp. 417-424. https://doi.org/10.1016/S1671-2927(06)60070-9

18. Tran, T.N. & Sanan-Mishra, N. (2015). Effect of antibiotics on callus regeneration during transformation of IR 64 rice. Biotechnol. Rep., No. 7, pp. 143-149. https://doi.org/10.1016/j.btre.2015.06.004

19. Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2014). Increase in frequency of wheat callus cultures regeneration for Agrobacterium-mediated transformation. http://utgis.org.ua/journals/index.php/VisnykUTGiS/article/view/356/392. Bul. Ukr. Soc. Genet. Breeders, 12, No. 2, pp. 159-165 [in Ukrainian].

20. Yu, Y. & Wei, Z. (2008). Influences of cefatoxime and carbenicillin on plant regeneration from wheat mature embryos. Biologia Plantarum, 52, pp. 553-556. https://doi.org/10.1007/s10535-008-0109-1

21. Dubrovna, O.V., Bavol, A.V., Zinchenko, M.O., Goncharuk, O.M. & Lyalko, I.I. (2012). Influence of cefotaxime on morphogenesis in the culture of apical meristems and mature embryos of wheat. Physiology and biochemistry of cult. plants, 44, No. 3, pp. 218-224 [in Ukrainian].

22. Sharma, V., H¬nsch, R. & Mendel, R. (2005). Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristematic shoot segments. Plant Breeding, 124, No. 3, pp. 242-246. https://doi.org/10.1111/j.1439-0523.2005.01095.x

23. Ren, J., Wang, X. & Yin, J. (2010). Dicamba and Sugar Effects on Callus Induction and Plant Regeneration from Mature Embryo Culture of Wheat. Agricultural Sciences in China, 9, No. 1, pp. 31-37. https://doi.org/10.1016/S1671-2927(09)60064-X

24. Bavol, A.V., Dubrovna, O.V., Lyalko, I.I. & Zinchenko, M.O. (2011). The influence of thidiazuron on processes of morphogenesis in culture in vitro of bread wheat. Physiology and biochemistry of cult. plants, 43, No. 5, pp. 412-418 [in Ukrainian].

25. Mendoza, M. & Kaeppler, H. (2002). Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.) In Vitro Cellular and Development Biology. Plant, 38, No. 1, pp. 39-45. https://doi.org/10.1079/IVP2001250

26. Barro, F., Martin, A., Lazzeri, P. & Barcel, P. (1999). Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica, 108, No. 3, pp. 161-167. https://doi.org/10.1023/A:1003676830857

27. Bavol, A.V., Dubrovna, O.V. & Lyalko, I.I. (2007). Regeneration of plants from the explants of the top of wheat seedlings shoots. Bul. Ukr. Soc. Genet. Breeders, 5, No. 1-2, pp. 3-10 [in Ukrainian].

28. Bavol, A.V., Dubrovna, O.V. & Lyalko, I.I. (2008). Regeneration of plants from different types of bread wheat explants. Physiology and biochemistry of cultivated plants, 40, No. 2, pp. 150-156 [in Ukrainian].

29. Kumar, R., Mamrutha, H., Kaur, A., Venkatesh, K., Grewal, A., Kumar, R. & Tiwari, V. (2017). Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 23, No. 4, pp. 945-954. https://doi.org/10.1007/s12298-017-0463-6

30. Gorbatyuk, I.R., Bavol, A.V., Holubenko, A.V. & Morgun, B.V. (2015). Effect of synthetic auxin like growth regulators on callus regenerative ability of common wheat. Biotechnologia acta, 8, No. 1, pp. 56-62. https://doi.org/10.15407/biotech8.01.056

31. Collins, G.B., Vian, W.E. & Phillips, G.C. (1978). Use of 4-amino-3,5,6-trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Sci., 18, No. 2, pp. 286-288. https://doi.org/10.2135/cropsci1978.0011183X001800020023x

32. Ozgen, M., Turet, M., Ozcan, S. & Sancak C. (1996). Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed., 115, pp. 455-458. https://doi.org/10.1111/j.1439-0523.1996.tb00956.x

33. Bavol, A.V., Dubrovna, O.V., Goncharuk, O.M. & Voronova, S.S. (2014). Agro­bacterium-mediated transformation of bread wheat using callus cultures. Factors of experimental evolution of organisms, 15, pp. 16-19 [in Ukrainian].

34. Vishnudasan, D., Patnaik, D. & Khurana, P. (2006). Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current science, 91, pp. 307-317.

35. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol., 1223, pp. 189-198. https://doi.org/10.1007/978-1-4939-1695-5_15

36. Wu, H., Doherty, A. & Jones, H. (2009). Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. In: Transgenic wheat, barley and oats (pp. 93-103), New York: Humana Press. https://doi.org/10.1007/978-1-59745-379-0_5

37. Wu, H., Sparks, C., Amoah, B. & Jones, H. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21, pp. 659-668. https://doi.org/10.1007/s00299-002-0564-7

38. Ahmad, A., Zhong, H., Wang, W. & Sticklen, M. (2002). Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L.). In vitro Cellular & Developm. Biology - Plant, 38, No. 2, pp. 163-167. https://doi.org/10.1079/IVP2001267

39. Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In: Vasil, I.K., Thorpe, T.A. [et al.] Plant cell and tissue culture. (pp. 139-151), Kluwer Publ., Dordrecht. https://doi.org/10.1007/978-94-017-2681-8_6

40. Ying-Hua, S., Yu-Bo, L. & Xian-Sheng, Z. (2011). Auxin-cytokinin interaction regulates meristem development. Mol. Plant, 4, No. 4, pp. 616-625. https://doi.org/10.1093/mp/ssr007